Do Special Noncovalent $\pi - \pi$ Stacking Interaction Really Exist?

\[\pi - \pi \] Stacking Effect (PSE)

- The energy difference between stacked aromatic units compared to, for example, saturated (hydrogenated) rings of about the same size.
Before we start......

- Benzene vs. cyclohexane
 both exist as fluids at room temperature.

 Similar intermolecular interaction----**Incompatible**
 with \(\pi - \pi \) stacking effect
• Polycyclic aromatic hydrocarbons (PAHs) vs. large alkanes
 PAHs become increasingly insoluble in common solvents with increasing size----
 Compatible with $\pi - \pi$ stacking effect
Models

Linear condensed acenes, from benzene to tetracene and their corresponding saturated ring systems.

Figure 1. Energy-minimized structures of the benzene dimer: a) T-shaped and b) \(\pi-\pi\) stacked. c), d) The cyclohexane dimer in two projections. The tetracene dimer: e) T-shaped and f) \(\pi-\pi\) stacked. g) The octadecahydrotetracene dimer.
Energy-minimized intermolecular distance R

- Saturated series: 426.2—426.5 pm
- Aromatic dimers (PD):
 - $n=1$ 391.4 [349.4]
 - $n=2$ 383.0 [337.9]
 - $n=3$ 379.4 [333.8]
 - $n=4$ 374.7 [331.4]
 - *decrease*

- Aromatic dimers (T-shaped):
 - $n=1$ 491.3 [493.0]
 - $n=2$ 493.5 [493.4]
 - $n=3$
 - $n=4$

The orientation of the monomers also play an important role in $\pi-\pi$ stacking.
Intermolecular interaction energies ΔE

<table>
<thead>
<tr>
<th>Method</th>
<th>Number of Rings</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SCS)-MP2</td>
<td>T-shaped, aromatic</td>
<td>2.49</td>
<td>4.98</td>
<td>7.70</td>
<td>10.53</td>
</tr>
<tr>
<td>B2PLYP-D</td>
<td></td>
<td>2.82</td>
<td>5.46</td>
<td>8.25</td>
<td>11.12</td>
</tr>
<tr>
<td>(SCS)-MP2</td>
<td>stacked, saturated</td>
<td>2.48</td>
<td>5.02</td>
<td>7.72</td>
<td>10.48</td>
</tr>
<tr>
<td>B2PLYP-D</td>
<td></td>
<td>3.09</td>
<td>5.92</td>
<td>8.88</td>
<td>11.83</td>
</tr>
<tr>
<td>(SCS)-MP2</td>
<td>stacked, aromatic</td>
<td>2.97</td>
<td>7.77</td>
<td>13.15</td>
<td>18.86</td>
</tr>
<tr>
<td>B2PLYP-D</td>
<td></td>
<td>2.62</td>
<td>6.81</td>
<td>11.46</td>
<td>16.33</td>
</tr>
</tbody>
</table>

Table 1: Calculated interaction energies $-\Delta E$ [kcal mol$^{-1}$].

Do not overestimate the effect of the π System in small size Molecules (<10 C’s).

[a] Counterpoise-corrected (1/2CP) single-point energy calculations using B97-D/TZV(2d,2p) energy-minimized geometries and a QZV3P AO basis set. (SCS)-MP2 refers to MP2 for saturated and SCS-MP2$^{[22]}$ for the aromatic systems, which is currently the best wavefunction approach for large van der Waals complexes.$^{[33]}$
Intermolecular interaction energies ΔE

The magnitude of the slope indicates the existence of PSE in stacked aromatic complex.

Figure 2. Interaction energies ΔE [B2PLYP-D/QZV3P(1/2CP)] as a function of the number of rings n.
• There is special interaction in the $\pi - \pi$ Stacked arrangement.

• Is the π system directly responsible for it?
Electrostatic Potential

Figure 3. Electrostatic potentials (B97-D/TZV(2d,2p), isosurface values in kcal mol$^{-1}$) for a) naphthalene and b) decalin.

ES interaction disfavored

ES interaction favored
Energy decomposition analysis

• The first-order interaction

\[E_1 = E_{ES} + E_{EXR} \]

\[E_{EXR} = \text{Pauli exchange repulsion} \]
Table 2: Contributions\(^{[a]}\) to the interaction energies (B2PLYP-D/TZV-(2d,p), [kcal mol\(^{-1}\)]) from an EDA.\(^{[b]}\)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(E_{\text{EXR}})</th>
<th>(E_{\text{ES}})</th>
<th>(E_{1})</th>
<th>(E_{\text{ind}})</th>
<th>(E_{\text{disp}}^{\text{PT2}})</th>
<th>(E_{\text{disp}}^{\text{DFT-D}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-shaped, aromatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9.4</td>
<td>-7.8</td>
<td>1.6</td>
<td>-1.0</td>
<td>-1.8</td>
<td>-2.0</td>
</tr>
<tr>
<td>2</td>
<td>17.5</td>
<td>-14.1</td>
<td>3.4</td>
<td>-1.8</td>
<td>-3.7</td>
<td>-3.9</td>
</tr>
<tr>
<td>3</td>
<td>25.7</td>
<td>-20.4</td>
<td>5.3</td>
<td>-2.6</td>
<td>-5.9</td>
<td>-5.9</td>
</tr>
<tr>
<td>4</td>
<td>34.2</td>
<td>-26.9</td>
<td>7.3</td>
<td>-3.4</td>
<td>-8.1</td>
<td>-8.0</td>
</tr>
<tr>
<td>stacked, saturated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>19.9</td>
<td>-14.7</td>
<td>5.2</td>
<td>-1.5</td>
<td>-2.8</td>
<td>-4.1</td>
</tr>
<tr>
<td>2</td>
<td>37.5</td>
<td>-27.5</td>
<td>10.0</td>
<td>-3.0</td>
<td>-5.6</td>
<td>-7.6</td>
</tr>
<tr>
<td>3</td>
<td>55.1</td>
<td>-40.3</td>
<td>14.8</td>
<td>-4.6</td>
<td>-8.4</td>
<td>-11.3</td>
</tr>
<tr>
<td>4</td>
<td>72.2</td>
<td>-52.8</td>
<td>19.4</td>
<td>-6.1</td>
<td>-11.2</td>
<td>-14.9</td>
</tr>
<tr>
<td>stacked, aromatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12.0</td>
<td>-8.6</td>
<td>3.5</td>
<td>-0.8</td>
<td>-2.9</td>
<td>-2.6</td>
</tr>
<tr>
<td>2</td>
<td>27.6</td>
<td>-20.3</td>
<td>7.4</td>
<td>-2.0</td>
<td>-6.9</td>
<td>-5.8</td>
</tr>
<tr>
<td>3</td>
<td>44.2</td>
<td>-33.0</td>
<td>11.2</td>
<td>-3.1</td>
<td>-11.2</td>
<td>-9.2</td>
</tr>
<tr>
<td>4</td>
<td>62.6</td>
<td>-46.6</td>
<td>16.0</td>
<td>-4.7</td>
<td>-15.9</td>
<td>-12.9</td>
</tr>
</tbody>
</table>
The increasing stability of the larger \(\pi \)-stacked dimers can be attributed almost exclusively to the dispersion component.

\[E_1 \text{ arom} < E_1 \text{ sat} : \text{Less repulsion for aromatic complex} \]
$E_{\text{disp}} = E_{\text{disp}}^{\text{PT2}} + E_{\text{disp}}^{\text{DFT-D}}$

$E_{\text{disp}}^{\text{PT2}}$: orbital-dependant

$E_{\text{disp}}^{\text{DFT-D}}$: a classical part
Orbital-dependent $E_{\text{disp}}^{\text{PT2}}$ is predominantly responsible for PSE.
A special role of the π system
Electron Correlation Contribution to the Interaction Energy

Figure 5. Correlation contributions to the interaction energies (counterpoise-uncorrected SCS-LMP2/TZV(2d,p)) for stacked arenes (---: fully energy-minimized complexes; --:-: fixed interplane distance of 349 pm) and T-shaped complexes (----).
• Both $\sigma-\pi$ and $\pi-\pi$ contributions distinguish the stacked aromatic orientation from the T-shaped orientation.

• Nonlinear curves rule out pure geometrical reasons.
Do Special Noncovalent $\pi - \pi$ Stacking Interaction Really Exist?

• Yes
• Large unsaturated systems (>10 carbons)
• Spatially close----Stacked