Asymmetric organocatalytic Michael addition to nitro-olefins

Literature presentation 4/06

The michael addition to nitro-olefins

Chiral nitro-alkanes: Useful building blocks

ORGANOCATALYSTS USED:

- 1) Chiral diamines
- 2) Cinchona alkaloids
- 3) Biunctional thioureas

The first example:diamines as promising catalysts

Table 1. Catalyst Screening for the Michael Reaction

entry	cat	yield ^a (%)	dr ^b (syn/anti)	ee ^c (syn)
1	но, Н соон	< 5	93 : 7	25
2	ТСООН	< 5		
3	The state of the s	80	80 : 20	75
4	A NO	89	83 : 17	73
5		80	82 : 18	64
7	√N N N N N N N N N N N N N N N N N N N	70	82 : 18	70
8	$C_{10}H_{21}$	88	80 : 20	47
9	(N)	78	92 : 8	72

aldehyde	R'	time	yield ^a (%)	dr ^b (s <i>yn/anti</i>)	ee ^c (syn)
∕сно	Ph	3 h	85	90/10	56 ^d
VCHO	Ph	27 h	94	86/14	65
∕ сно		3 d	67	96/4	75 ⁶
∕~сно	CF3	3 d	77	98/2	78 ^e
∕_сно	\sqrt{s}	2 d	82	86/14	71

Juan M. Betancort and Carlos F. Barbas III*
Org. Lett., Vol. 3, No. 23, 2001

Proposed transition state

Scheme 1. Proposed Transition State

Juan M. Betancort and Carlos F. Barbas III*

Org. Lett., Vol. 3, No. 23, 2001

a-hydoxy ketones:control of selectivity via H-bondng

Scheme 1. Proposed Mechanism for Diamine-Catalyzed Michael Addition

Olivier Andrey, Alexandre Alexakis,* and Gérald Bernardinelli

Org. Lett., Vol. 5, No. 14, 2003

Michael addition of a-hydroxy ketone

Table 1. Asymmetric Addition of α-alkoxycarbonyl Compounds to Nitrostyrene, Catalyzed by Diamine **iPBP**

Ph
$$NO_2$$
 iPBP NO_2 NO_2 NO_2 NO_2 NO_2 NO_2 NO_2 NO_2 NO_2 NO_2

entry	\mathbb{R}^1	R²	solvent	reaction conditions	dr ^a anti/syn	yield ^b (%)	ee ^c (%)
1	Me	Ме	CHC1 ₃	rt, 2 days	17:83	75	69
2	Me	Н	$CHCl_3$	rt, 7 days	83:17	79	97.6
3	<i>n</i> -Pr	Н	$CHCl_3$	60°C, 7 d	92:8	21	98.4
4	Me	Н	CH_2Cl_2	rt, 7 days	82:18	68	98.3
5	Me	Н	Et ₂ O	rt, 7 days	70:30	60	81
6	Me	Н	THF	rt, 7 days	60:40	37	73
7	Me	Н	MeOH	rt, 2 days	75:25	53	93
8	Me	Н	<i>î</i> PrOH	rt, 4 days	68:32	48	75
9	Me	Н	DMF	rt, 7 days		0_q	
10^{ϱ}	Me	Н	MeOH	rt, 4 days	30:70	67	11

^a Determined by ¹H NMR or SFC of the crude product. ^b Isolated yield after column chromatography. ^c Determined by chiral GC or SFC of the purified product (major diastereomer). ^d Decomposition of the starting marterial. ^e With L-proline as chiral catalyst.

Table 2. Asymmetric Addition of α -Hydroxyacetone to Nitroolefins, Catalyzed by Diamine **iPBP**, in Chloroform

entry/product	Ar	dr ^a anti/syn	yield ^b (%)	ee ^c (%)
1	Ph	83:17	79	97.6
2	4-MePh	84:16	68	97.6
3	4-MeOPh	81:19	65	97.3
4	4-C1-Ph	87:13	81	97.8
5	2-CF₃Ph	95:5	84	98.5
6	2,6-C1 ₂ Ph	84:16	83	98.1
7	3,4-C1₂Ph	88:12	66	98.1
8	2,4-C1 ₂ Ph	91:9	85	98.6
9	1-naphthyl	78:22	68	98.3
10	2-thienyl	78:22	66	96.3

^a Determined by ¹H NMR or SFC of the crude product. ^b Isolated yield after column chromatography. ^c Determined by chiral SFC of the purified product.

Olivier Andrey, Alexandre Alexakis,* and Gérald Bernardinelli

Org. Lett., Vol. 5, No. 14, 2003

Protonated pyrrolidine-pyridine catalysts

Table 1. Catalytic Asymmetric Michael Addition of Cyclohexanone **(4)** to Nitrostyrene **5** under Various Conditions^a

entry	cat.	solvent	time (h)	yield ^ø (%)	dr ^c (<i>synlanti</i>)	ee (%) ^d (<i>syn</i>)
1	3a	CHCl3	24	82	95/5	63
2^e	3a	CHCl ₃	36	76	97/3	86
3	3b	CHCl ₃	36	78	95/5	88
4^e	3b	CHCl ₃ (+ acid ^f)	36	99	97/3	94
5e	3b	CHCl ₃ (+acidg)	20	98	98/2	95
6^e	3c	CHCl ₃ (+acid ^f)	24	97	97/3	95
7^e	3c	CHCl ₃ (+acidg)	24	95	98/2	99
8	$3d^h$	CHCl ₃	48	66	91/9	56
9	$3e^h$	CHCl ₃	48	55	92/8	55

^a Unless otherwise noted, all reactions were conducted in CHCl₃ (2 mL) using 4 (0.5 mL, 20 equiv) and 5 (0.25 mmol) in the presence of 10 mol % of the catalyst. ^b Isolated yield. ^c Determined by ¹H NMR of the crude mixture. ^d Determined by chiral HPLC analysis (Chiralpak AD, hexane/2-propanol = 90:10). ^eAt 0 °C. ^f 2,4-Dinitrobenzenesulfonic acid (10 mol %) was added. ^g 2,4-Dinitrobenzenesulfonic acid (5 mol %) was added.

Takaaki Ishii, Shingo Fujioka, Yusuke Sekiguchi, and Hiyoshizo Kotsuki*

J. AM. CHEM. SOC. 2004, 126, 9558-9559

Scheme 2

entry	time	product	yield (%)	dr (syn/anti)	ee (%) (syn)
		O Ç ₆ H ₄ -p-OMe	9		
$1^{\rm b}$	46 h	NO ₂	97	97 / 3	93
2^{c}	24 h	7	100	97 / 3	96
		O Ç ₆ H ₄ -o-OMe	Э		
3^{b}	21 h	NO ₂	100	98 / 2	92
4^{c}	24 h	8	99	98 / 2	93
5 ^b	50 h		92	97 / 3	98
6 ^c	36 h	NO ₂	100	97 / 3	93
7 ^b	24 h	، 🕌	99	99 / 1	94
8^{c}	8 h	NO ₂	99	98 / 2	93
		10			

^a All reactions were performed in CHCl₃ (2 mL) at 0 °C using ketone (20% vol) and nitroolefin (0.25 mmol) in the presence of 10 mol % of 3 and 5 mol % of 2,4-dinitrobenzenesulfonic acid. ^b **3b** was used. ^c **3c** was used. ^d **3a** was used.

Quartenary carbon formation

Figure 1. Various amine catalysts.

$$\begin{array}{c|c} & & & & \\ & &$$

Figure 2. Proposed transition state.

Table 1. Organocatalyzed Direct Michael Reactions for the Synthesis of Quaternary Carbon

entry	catalyst ^a	additive (equiv)	time (h)	yield (%)	ee^b (%)
1 c	4	AcOH (1.5)	12	84	
2	5		48	87	23
3	6		48	79	63
4	7		48	72	17
5	8	AcOH (0.3)	96	< 1	65
6	9	AcOH (0.3)	96	82	21
7	10		0.5	90	50
8	10	TFA (0.3)	24	96	61
9	11	TFA (0.3)	96	19	73
10	12	TFA (0.3)	96	4	75

^a Catalyst structures are shown in Figure 1. ^b Determined by chiral HPLC using a CHIRALPAK AS-H column. ^c Isobutylaldehyde (1.2 equiv) was used.

Nobuyuki Mase,† Rajeswari Thayumanavan, Fujie Tanaka,* and Carlos F. Barbas III*

Org. Lett., Vol. 6, No. 15, 2004

Table 3. Diamine 10/TFA-Catalyzed Direct Michael Reactions for the Synthesis of Quaternary Carbon

entry	donor 13	R ¹	R ²	time	product 15	yield	dr ^a	ee (%) ^b
				(h)		(%)	(syn/anti)	(syn/anti)
1	13a	Me	Me	48	15a	87	-	80
2	13b	-(C	H ₂) ₄ -	24	15b	93	-	91
3	13c	-(C	H ₂) ₅ -	96	15c	90	-	59
4	13d	Me	Et	96	15d	94	74/26	81/75
5	13e	Me	Pr	96	15e	95	74/26	86/67
6	13f	Me	nonyl	96	15f	96	70/30	85/58
7	13g	Me	/ ~~/	96	15g	93	84/16	75/45
8	13h	Me	Ph	96	15h	87 ^c	89/11	18/79
9	13i	Ме	40	96	15i	75°	55/45	65/65
10	13j	Me	LOK	96	15j	64°	54/46	70/64
11	13k	Me	10	96	15k	75°	67/33	74/43

^a Determined by ¹H NMR. ^b Determined by chiral HPLC analysis using CHIRALCEL OD-H, OJ-H, and/or CHIRALPAK AS-H columns. ^c Starting material was recovered in 9% (entry 8), 25% (entry 9), 30% (entry 10), and 16% (entry 11) yields.

Cinchona alkaloids: bifunctional catalysis

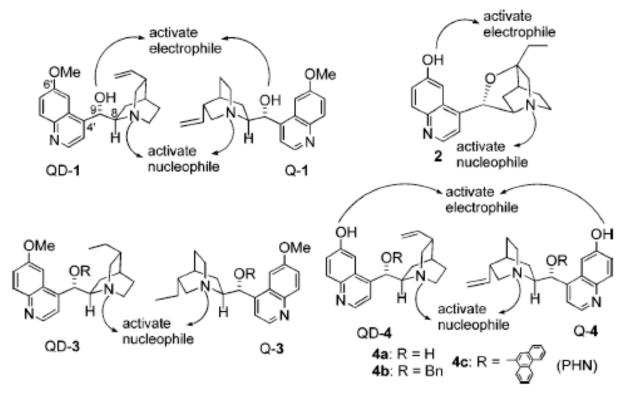


Figure 1. Mode of activation of nucleophile and electrophile by cinchona alkaloids.

Chiral quartenary carbon formation

Table 1: Diastereoselective and enantioselective 1,4-addition catalyzed by Q-2.[a]

Entry	3	4	Cat.	T [°C]	t	Yield [%] ^[b]	d.r. ^[c]	ee [%] ^[d]
1	3 A	4a	Q- 2 b	-60	48 h	94	95:5	99
2	3 A	4e	Q-2b	-60	4 d	87	> 98:2	99
3	3 B	4a	Q-2a	-20	72 h	93	> 98:2	99
4	3 B	4b	Q-2a	-20	74 h	91	> 98:2	99
5	3 B	4c	Q-2a	-20	74 h	95	> 98:2	>99
6	3 B	4 e	Q-2c	23	4 d	83	> 98:2	99
7	3 C	4a	Q-2 c ^[e]	-20	63 h	73 ^[g]	91:9	>99
8	3 D	4d	Q-2b	-60	44 h	87	98:2	99
9	3 D	4e	Q-2c	-60	48 h	82	98:2	99
10	3 E	4a	Q-2b	-60	48 h	76 ^[g]	86:14	99
11	3 F	4a	Q-2a	-20	60 h	78 ^[g]	92:8	92
12	3 F	4 f	Q-2a	-20	84 h	78 ^[g]	93:7	92
13	3 G	4a	Q-2a ^[f]	-50	6 d	77	95:5	96
14	3 H	4a	Q- 2b ^[f]	-50	6 d	77 ^[g]	> 98:2	> 99
15	3 H	4 f	Q-2a	-20	84 h	75	93:7	98

[a] Unless noted, reactions were conducted on a 0.2-mmol scale in 0.2 mL THF with 10 mol% Q-2. [b] Yield of isolated product. [c] Determined by ¹H NMR analysis of crude product. [d] Determined by HPLC analysis. [e] Here 15 mol% catalyst was used. [f] Here 20 mol% catalyst was used. [g] Yield of the pure major diastereomer.

Figure 1. Carbon nucleophiles 3 and Michael acceptors 4 from Table 1.

Deng et al

Angew. Chem. Int. Ed. 2005, 44, 105-108

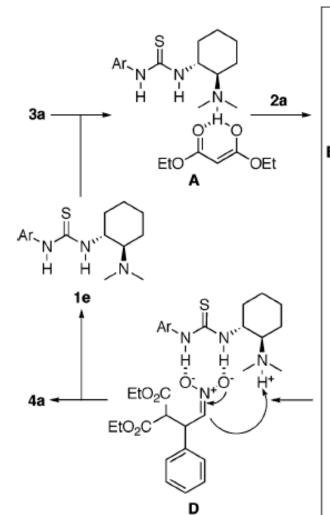
5Dd: R=4-Cl-C₆H₄ **5De**: R=*i*Bu

JDE. N=10

Thiourea bifunctional catalysis

Tomotaka Okino, Yasutaka Hoashi, Tomihiro Furukawa, Xuenong Xu, and Yoshiji Takemoto*

J. AM. CHEM. SOC. 2005, 127, 119-125


$$R^{1} \xrightarrow{NO_{2}} R^{2} \xrightarrow{R^{2}O_{2}C \xrightarrow{R^{3}}CO_{2}R^{2}} (2 \text{ equiv}) \xrightarrow{R^{2}O_{2}C \xrightarrow{R^{3}}CO_{2}R^{2}} NO_{2}$$

$$1a \text{ (0.1 equiv), toluene, rt} \qquad R^{2}O_{2}C \xrightarrow{R^{3}}CO_{2}R^{2}$$

entry	R ¹	R²	R³	adduct	time (h)	% yieldø	% ee ^c (config.) ^d
1	Ph	Et	Н	4a	24	86	93 (S)
2	2,6-(MeO) ₂ Ph	Et	Н	4b	72	87	93 (S)
3	4-F-Ph	Et	Н	4c	12	87	92 (S)
4	1-naphthyl	Et	Н	4d	24	95	$92 (-)^e$
5	2-thienyl	Et	Н	4e	48	74	90 (−)e
6	pentyl	Et	Н	4f	48	78	81 (S)
7	ⁱ Bu	Et	Н	4g	48	88	81 (S)
8	Ph	Me	Me	4h	36	82	93 (-)e

1a (0.1 equiv)

^a The reaction was conducted with nitroolefins (1 equiv), nucleophiles (2 equiv), and toluene at room temperature. ^b Isolated yield. ^c Enantiomeric excess was determined by HPLC analysis of 4 using a chiral column. ^d Absolute configuration was determined by comparing the specific rotation of 4 with that of literature data. ⁶ Not determined.

