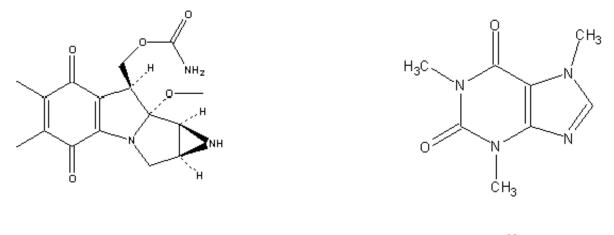
Most Recent Advances in Hydroamination:

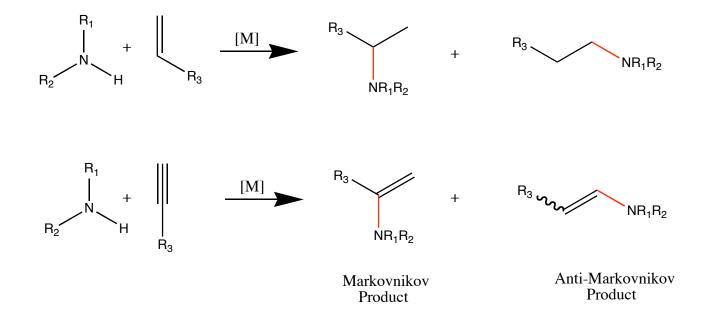

A Little Supplement to CEM852

Hartwig, J. F. J. Am. Chem. Soc. 2006, ASAP
He, C.; Zhang, J. J. Am. Chem. Soc. 2006, ASAP
Shibasaki, M.; Qin, H. J. Am. Chem. Soc. 2006, ASAP
Ackermann, L. Angew. Chem. Int. Ed. 2005, 44, 5972-4
Roesky, P. Angew. Chem. Int. Ed. 2005, 44, 7794-8

Seminar Outline

- Introduction of hydroaminations
- History of hydroaminations
- New catalysts for hydroaminations
- Conclusions

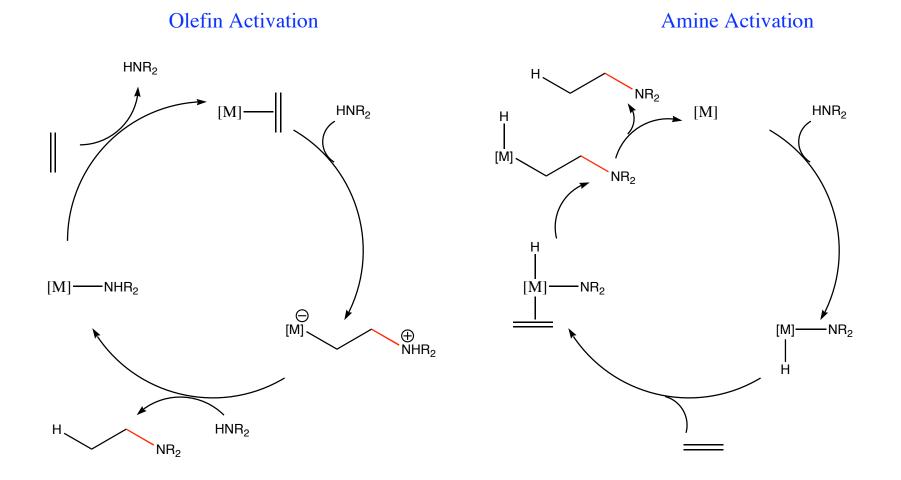
Organonitrogen Compounds in Industry



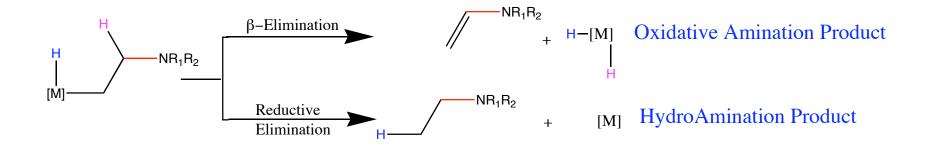
Mitomycin (antibiotic)

caffeine

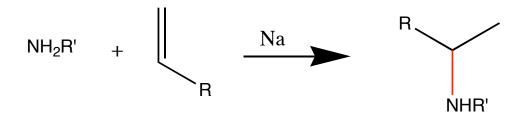
 Bactericides, herbicides, corrosion inhibitors, extraction agent in the production of penicillin, softening agents, wetting agents, dye fixers, asphalt emulsifiers, pigment dispersing agents, petroleum additives, a polymer in paper making, textile finishing


Hydroamination of Alkenes and Alkynes

Overall reaction is thermodynamically favorable with negative reaction entropy, which means high temperature is not able to overcome high activation barrier.


Steinborn, D.; Taube, R. Z. Chem. 1986, 26, 349

Two General Catalytic Cycles


Togni, A. J. Am. Chem. Soc. 2000, 122, 4098

Two Pathways for Breaking the Metal Alky Bond

Muller, T. E. Chem. Rev. 1998, 98, 675

First Example of Hydroamination

 $R=H,CH_3,(CH_2)_nCH_3$ R'= H, Et

Condtions: 200°C and 1000atm Yields were generally poor with polymeric side-products

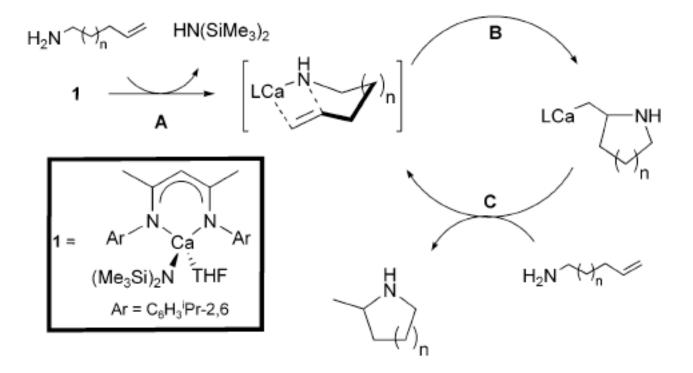
Howk, A. et al J. Am. Chem. Soc. 1954, 76, 1899

Other Metals Used for Hydroamination

Stoichiometric Hg

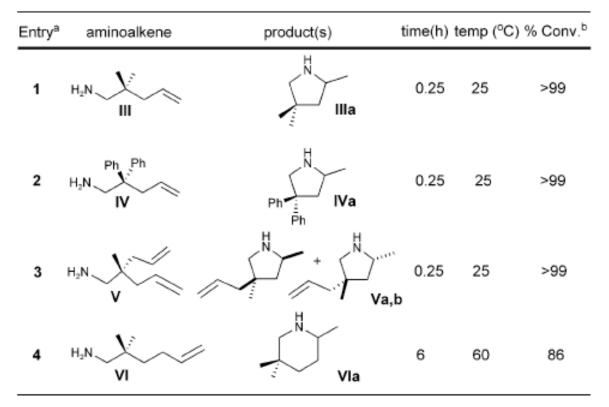
Barluenga, J. et al Synthesis 1975, 116

- Ca compounds Crimmin, M. R. et al J. Am. Chem. Soc. 2005, 127, 2042
- Lanthanide: La, Sm, Nd...
 Marks, T. J. et al J. Am. Chem. Soc. 1989, 111, 4108
- Late-transition-metal complex: Ir, Rh, Ni, Pd, Pt, and Ru Coulson, D. R. *Tetrahedron Lett.* 1971, *5*, 429
 Casalnuovo, A. L. et al *J. Am. Chem. Soc.* 1988, *110*, 6738
- Group 4 metal: Ti, Zr, and Hf Bergman, R.G. et al *J. Am. Chem. Soc.* **1992**, *114*, 1708
- Actinide metal catalyst: U and Th Haskel, A. et al *Organometallics* 1996, *15*, 3773


Disadvantages of These Catalysts...

- Toxic: Hg
- Highly sensitive to moisture and air: Ln, Ti, Zr and Hf.
- Bad polar-functional-groups tolerance: Ln, group 4 metals
- Expensive: late transition metals
- Modest selectivity, sluggish rates, sometimes requiring stabilizing ligands or additives: late transition metals

What to do?

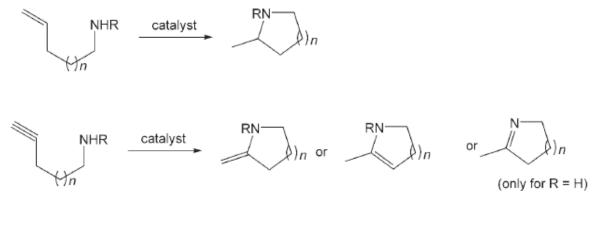

- Explore more (metal) catalysts
- Optimization of conditions by detailed study of mechanisms
- Do NOT use any metals:Proton-catalyzed hydroamination Bergman, R. G. et al J. Am. Chem. Soc. 2005, 127, 14542

Calcium-Mediated Hydroamination Catalyst

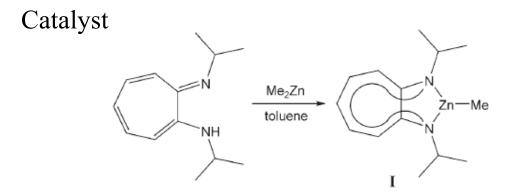
Crimmin, M. R. et al J. Am. Chem. Soc. 2005, 127, 2042

Calcium-Mediated Hydroamination Catalyst

 a Entries 1–3, 10 mol % cat. loading. Entry 4, 20 mol % (10 mol % required 72 h to produce 85% conversion). b Determined by $^1\rm H$ NMR in C₆D₆.


Crimmin, M. R. et al J. Am. Chem. Soc. 2005, 127, 2042

Calcium-Mediated Hydroamination: Scope


- Commensurate with some Ln catalyst (cationic Sc species)
- Low cost and easily available
- Environmentally benign
- Catalyst is not stale
- Functional group tolerance? Not known yet.

Crimmin, M. R. et al J. Am. Chem. Soc. 2005, 127, 2042

Zinc-Mediated Hydroamination

Roesky, P. Angew. Chem. Int. Ed. 2005, 44, 7794-8

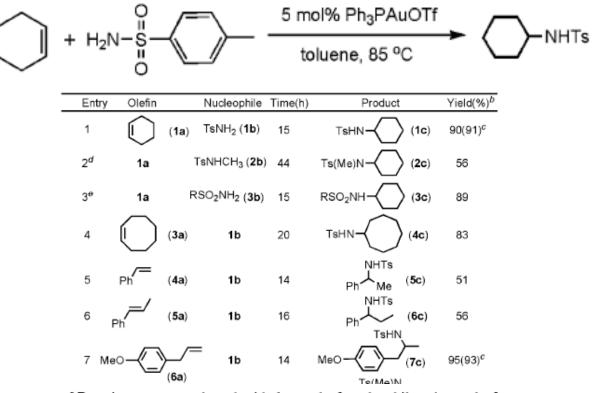
Zinc-Mediated Hydroamination

Entry	Substrate		Product		cat. I [mol%]	Activ. ^[b] [mol %]	<i>t</i> [h]	Conv. [%] ^[4]
1	PMB ^{-N}	la	PMB Me N O	16	1 1	- 1	144 39	> 99 ^[d] > 99 ^[d]
2	Bn	2a	Me N	2 b	1 0.1 1	_ 0.1 1	72 8 45	> 99 > 99, (91) ^[e] > 99 ^[d]
3	H ₂ N	3a	Me	3 b	10 2	_ 2	144 14	> 99 > 99, (70) ^[e]
4	Bn-H	4a	Me N	4b	1 10 1	- 10 1	96 1.5 144	19 > 99 94
5	Ph H ₂ N 0	5 a	Ph O Me	5 b	10 2	_ 2	6 14	> 99 > 99
6	NH O	6a	N Me	6b	1 0.1	0.1	4 8	95 > 99
7	Bn N	7a	O N	7 b	10	_	60	25

Entry	Substrate		Product		cat. I [mol%]	Activ. ^[b] [mol %]	<i>t</i> [h]	Conv. [%] ^{[q}
8	Bn	7a	O N Me	8 b	10	10	60	> 99 ^[1]
9	MeS	9a	Me H SMe	9b	10	_	15	92
10	Ph NH ₂ H	10a	N N H O	10b	5	-	72	51
11	Ph NH ₂ N	10a	Me H N N H O	116	10	_	15	> 99
12	HO.N.	12a	O- MeN-Me	12b	1 0.5	_ 0.5	5 4	98 ^[d] > 99 ^[d]
13	H_2N^{-N}	13 a		13 b	10	_	14	> 99
14	Bn.N.O	14a	Bn~N O	14b	5	_	312	> 99

[a] Reaction conditions: amine (430 μ mol), catalyst I, benzene (0.5 mL), 120 °C. [b] Activator: [PhNMe₂H][B(C₆F₅)₄]. [c] Determined by ¹H NMR spectroscopy. [d] The reaction was carried out at 60 °C. [e] Yield of isolated product; the reaction was performed on a 2-mmol scale. [f] **8 b**/7 b = 6:1.

Zinc-Mediated	Hydroaminat	ion of Alkene
----------------------	-------------	---------------


Entry	Substrate		Product		cat. I [mol%]	Activ. ^[b] [mol %]	<i>t</i> [h]	Conv. [%] ^[:]
	\square		HN		10	-	30	87 ^[d]
1	H ₂ N	15 a		15 b	5	 5	28	> 99
	n ₂ N		Me		5	5	8	80
	Db Db		HN		10	_	12	> 99
2	H _N	16a	Me Ph	16b	10	_	24	69 ^[d]
			Ph		5	5	5	> 99
	Me Me		HN-		13.3	_	72	> 99
3	H ₂ N	17 a	Me Me	17b	13.3 5	_ 5	52	46
4	H ₂ N Me	18a	MerryMe	18b	10	10	36	19

[a] Reaction conditions: amine (430 μ mol), catalyst I, benzene (0.5 mL), 120 °C. [b] Activator: [PhNMe₂H][B(C₆F₅)₄]. [c] Determined by ¹H NMR spectroscopy. [d] Yield of isolated product; the reaction was carried out at 100 °C in toluene.

- Good functional tolerance
- Cocatalyst repuired to speed the reaction
- Ring size has a larger influence than electronic effects
- Slower for alkenes

Roesky, P. Angew. Chem. Int. Ed. 2005, 44, 7794-8

Gold-Mediated Hydroamination of Alkene

^{*a*} Reactions were conducted with 1 mmol of nucleophiles, 4 mmol of olefins (2.0–2.8 mmol could be recovered after the reaction in most cases), and 5 mol % of Ph₃PAuCl/AgOTf in 2 mL of toluene at 85 °C. ^{*b*} Isolated yield. ^{*c*} The yield in parentheses refers to a reaction performed without solvent. ^{*d*} At 95 °C. ^{*e*} R = MeOC₆H₄. ^{*f*} 9c:9c' = 2:1. ^{*g*} A 1:1 ratio of TsNH₂ and norbornene was used.

Gold-Mediated Hydroamination of Alkene

ł	Entry	Olefin		Nucleophile	Time(h)	Product	Yield(%) ^b
ł	В	6a	·,	2b	48	MeO	55
9	9	C ₆ H ₁₃	(8a)	1b	14	C_6H_{13} $\stackrel{\text{NHTs}}{\underset{(9c)}{\overset{+}{\longrightarrow}}}$ C_5H_{11} $\stackrel{\text{NHTs}}{\underset{(9c')}{\overset{+}{\longrightarrow}}}$	s 65 ⁷
1	0	_C₅H ₁₁	(9a)	1b	38	C ₅ H ₁₁	51
1	1 ^g	A	(10a)	1b	15	NHTs (11c)	89
1	2 ^g	10a		3b	15	NHSO ₂ R (12c)	80
1	3 /	AcO	(11a)	1b	48		44

^{*a*} Reactions were conducted with 1 mmol of nucleophiles, 4 mmol of olefins (2.0–2.8 mmol could be recovered after the reaction in most cases), and 5 mol % of Ph₃PAuCl/AgOTf in 2 mL of toluene at 85 °C. ^{*b*} Isolated yield. ^{*c*} The yield in parentheses refers to a reaction performed without solvent. ^{*d*} At 95 °C. ^{*c*} R = MeOC₆H₄. ^{*f*} 9c:9c' = 2:1. ^{*g*} A 1:1 ratio of TsNH₂ and norbornene was used.

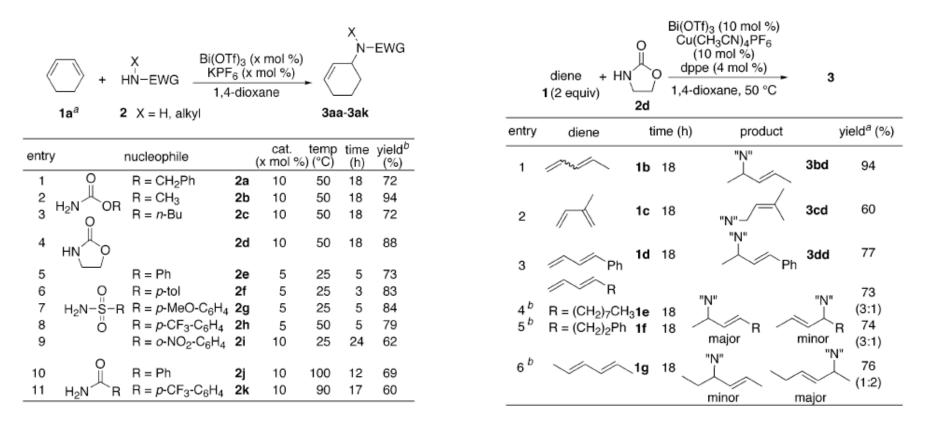
Gold-Mediated Hydroamination of Alkene

Entry	Substrate	Time(h)	Product	Yield(%) ^b
1	Ph_Ph R = Ts, 1d	17	Ph Ph R = Ts, 1e	96
2 ^c 3	R = Ns, 2d	48	R = Ns, 2e	99
3	NH R = Ac, 3d	48	N R = Ac, 3e	0
	R		Ŕ	
	Ph Ph		Ph Ph	
4	(4d)	15	(4e)	91
	NH'		N,	
	Ts		Ťs	
-	Ph Ph		Ph Ph	
5	(5d)	15	(5e)	95
	NH		N	
	Ts		Ts	
6		15		00
0	(6d)	15	(6e)	99
			, ^й ,	
	Ts		Ts	
	$\forall \forall$		Yak	
7	(7d)	10		97
	\cap			
	OH NHTS			

^{*a*} Reactions were conducted with 0.5 mmol of substrate and 5 mol % of Ph₃PAuCl/AgOTf in 2 mL of toluene at 85 °C. ^{*b*} Isolated yield. ^{*c*} Ns= 2-nitrobenzenesulfonate.

Gold-Mediated Hydroamination of Alkene: Facts

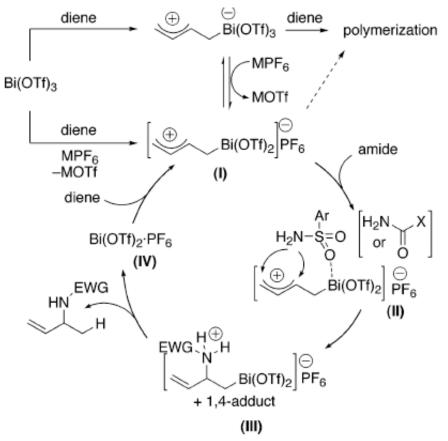
- Unactivated olefins can work to give Markovnikov product
- Nucleophiles: olefins = 1:4
- No b-elimination doesn't occur
- Mechanism study based on NMR shows gold(I) activates olefin, but not TsNH₂ which attacks from the oppsite face of gold
- The reaction is inhibited by alkylamines or aniline


Bismuth-Mediated Hydroamination: Catalyst

<	1a + H ₂ I	0 N OCH ₂ Ph - 2a	Bi(OTf) ₃ additive 1,4-dioxane,	`````	HN-C	bz
entry	Bi(OTf) ₃ (<i>x</i> mol %)	additi (<i>y</i> mol		1a (equiv)	temp (°C)	yiəld (%)
1	10	0		4	25	17
2	10	Cu(CH ₃ CN) ₄	PF ₆ 4 (10)	4	25	79
3	10	Cu(OTf)(C ₆ H	H ₆) _{1/2} 5 (10)	4	25	24
4	10	KPF ₆ 6 (10)		4	25	79
5	10	NH ₄ PF ₆ 7 (10	0)	4	25	74
6	0	4 (10)		4	25	0
7	10	4 (10)		2	25	71
8	10	4 (10)		2	50	66
9	10	4(10) + dpp	e (4)	2	50	80
10	10	6 (10)		2	50	73
11	10	6 (10) + dpp	e (4)	2	50	42

- Catalyst: Bi
- Cocatalyst repuired: PF₆ ligand
- Cu is not needed

Shibasaki, M.; Qin, H. J. Am. Chem. Soc. 2006, ASAP


Bismuth-Mediated Hydroamination: Scope

- Not sensitive to electronic properties of the nucleophiles
- Acyclic dienes can work; isomers were produced

Shibasaki, M.; Qin, H. J. Am. Chem. Soc. 2006, ASAP

Bismuth - Mediated Hydroamination: Mechanism

• Counteranion exchange with PF_6^- , the coordination site of Bi will be available

Shibasaki, M.; Qin, H. J. Am. Chem. Soc. 2006, ASAP

Pd-Mediated Hydroamination of Alkene

200

entry	Pd precursor	ligand	acid	yiəld ^b
1	2% (Xantphos)Pd(OTf)2	-	-	81 (93)
2	2% (Xantphos)PdCl ₂	-	-	0
3	2% (DPPF)Pd(OTf) ₂	-	-	7 (13)
4	2% [(Xantphos)Pd(CH ₃ CN) ₂](OTf) ₂	-	-	76 (91)
5	2% (DPPF)Pd(CH ₃ CN) ₂ (OTf) ₂	-	-	9 (16
6	2% Pd(TFA)2	3% Xantphos	5% TfOH	66
7	2% Pd(TFA)2	2% DPPPent	20% TfOH	11
8	2% Pd(TFA)2	3% BINAP	5% TfOH	2
9	2% Pd(TFA)2	3% DPEphos	5% TfOH	10
10	2% Pd(TFA)2	3% D ⁱ PrPF	20% TfOH	0
11	2% Pd(PPh ₃) ₄	-	5% TfOH	2
12	2% [Pd(COD)(η^3 -allyl)]OTf	2% Xantphos	-	86 (36
13	2% [Pd(COD)(η ³ -allyl)]OTf	2% DPPF	-	2 (13
14	2% [Pd(COD)(η ³ -allyl)]OTf	2% DPEphos	-	3 (14
15	2% [Pd(COD)(η ³ -allyl)]OTf	2% BINAP	-	0 (16
16	2% [Pd(COD)(η^3 -allyl)]OTf	2% DPPPent	-	2 (10
17	2% [Pd(COD)(η^3 -allyl)]OTf	2% DPPE	_	0 (9)
18	-	-	10% TfOH	0
19	-	-	10% HBF4 ^c	0
PPh ₂	$\begin{array}{c} & & \\$		$Ph_{2} \qquad Fe \\ PR_{2} \\ Ph_{2} \qquad PR_{2} \\ R = {}^{i}Pr, D^{i}PrPF \\ R = Ph, DPPF \\ R = Ph, DPPF $	

Hartwig, J. F. J. Am. Chem. Soc. 2006, ASAP

Pd-Mediated Hydroamination of Alkene

H ₂ N-	- 💦 + 🧷		<u>mol% 1</u> 25 °C, 24		R
entry	amine	yiəld ^b	entry	aminə	yiəld ^b
1	$R = 3 - NO_2$	96	8^d	R = 2-CN	98
2¢	$R = 4-NO_2$	99	9	R = 3-CN	99
3	R = 3-COOH	81	10	R = 4-CN	97
4	$R = 3-COCH_3$	93	11	$R = 2-CO_2Et$	88
5	R = 4-COCH ₃	99	12	$R = 3-CO_2Et$	82
6	R = 2-SMe	98	13	$R = 4-CO_2Et$	95
7	R = 4-SMe	99	14^d	R = 2-OH	57

^{*a*} Reaction conditions: 1.0 mmol of amine, 2.0 mmol of 1,3-cyclohexadiene, 2.0 mL of THF. ^{*b*} Isolated yield (average of two runs), in percent. ^{*c*} 50 °C. ^{*d*} 4.0 mmol of diene, 1.0 mL of THF, 50 °C.

1: XantphosPd(η^3 -allyl)Cl

- Good functional tolerance
- Excellent yields
- More factors influecing the reaction were studied in the paper: bite angle of the ligand, acid effect and counterion effect

Hartwig, J. F. J. Am. Chem. Soc. 2006, ASAP

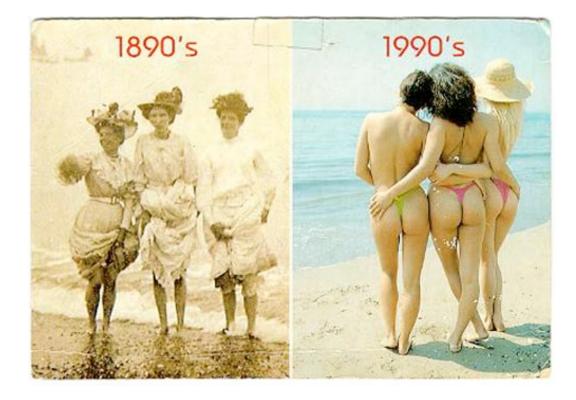
H ₂ N—	~		mol% 2 10l% TfO , 100 °C		
entry	amine	yiəld ^b	entry	amine	yiəld ^b
1	R = 2-OH	80	8	R = C-CN	71
2	$R = 4-CH_2CH_2OH$	89	9	R = 3-CN	90
3	R = 3-COOH	92	10	R = 4-CN	72
4 ^c	R = 3-COCH ₃	81	11	$R = 2-CO_2Et$	99
5	R = 4-COCH ₃	71	12	$R = 3-CO_2Et$	92
6	R = 2-SMe	59	13 ^d	$R = 4-CO_2Et$	89
7 <i>d</i>	R = 4-SMe	88	14^d	R = 3-NHCOCH ₃	91
			15^d	R = 4-CONH ₂	86

^{*a*} Reaction conditions: 1.0 mmol of amine, 2.0 mmol of styrene, 1.0 mL of dioxane. ^{*b*} Isolated yield (average of two runs), in percent. ^{*c*} Reaction catalyzed by 2 mol % Xantphos, and 2 mol % $[Pd(CH_3CN)_4](BF_4)_2$. ^{*d*} Reaction run without TfOH cocatalyst.

1: XantphosPd(η^3 -allyl)OTf

Conclusions

- 1. New metal-catalyzed hydroaminations were established in 4 months
- 2. More effient
- 3. Better functional group tolerance
- 4. Cheap, readily available and robust to moisture and air



Dog's Year, I'll be 30...

A Lot Things Changed...

But My Life Is Still Crappy...

I Planned a Lot of Things Done Before 30...

But Still Not Decided Which First...

Thank You! Questions?

