Literature Presentation

Total Synthesis of Stephacidin A

Baran, P. S.; Guerrero, C. A.; Ambhaikar, N. B.; Hafensteiner, B. D. Angew. Chem. Int. Ed. 2005, 44, 606-609.

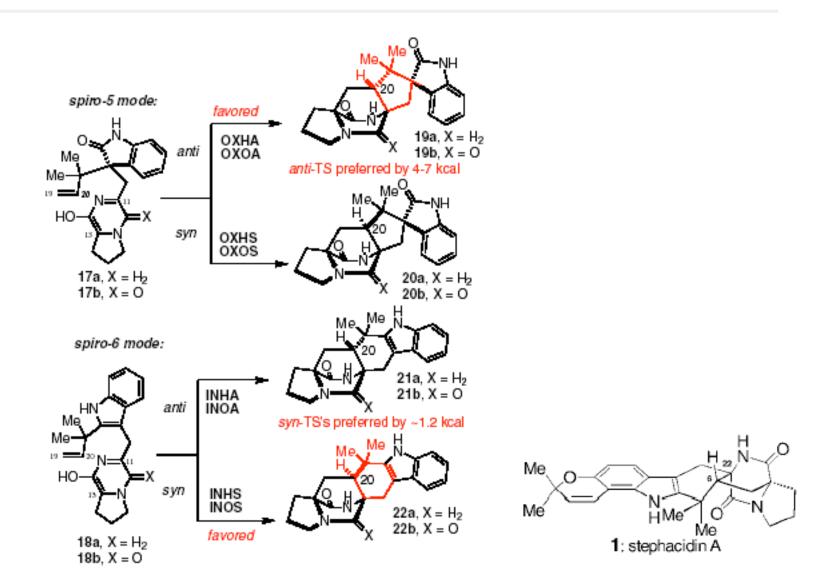
Yiqian Lian

Jan-27-05

Stephacidins

Stephacidin A and B

- "Recently disclosed by scientists at BMS, signifying a new peak of structural complexity within the indole alkaloids family. (JACS, 2002, 124, 14556).
- "Isolated from the fungus *Aspergillus ochraceus* WC76466, stephacidin B (**2**) represents one of the most structurally complex and novel alkaloids occurring in Nature, contains 15 rings, nine stereogenic centers, and the ubiquitous 6-oxyindole substructure.
- exhibit potent in vitro cytotoxic activity against a variety of human tumor cell lines. The bioactivity of the stephacidins is not mediated by p53, mdr, bcl2, tubulin, or topoisomerase II, which suggests a novel mechanism of action.


Bicyclo[2.2.2]diazaoctane via DA Rxn from Diketopiperazine

- (i) 4 M HCl/dioxane, 45%; (ii) Boc₂O (2.75 equiv), DMAP (1.1 equiv), CH₂Cl₂, 28%;
- (iii) AlCl₃ (5 equiv), EtOAc, reflux 5 days, 81%;
- (iv) excess NaH, MeI, THF, reflux 1h, 62%.

Williams, R. M. et al. TL, 2004, 45, 4489. For a review on Biosynthetic DA: Ang. 2003, 3078.

Bicyclo[2.2.2]diazaoctane via DA Rxn from Diketopiperazine

Ab Initio Calculations

Williams, R. M. et al. TL, 2004, 45, 4489.

Baran's Strategy

 \int

Synthesis of Tryptophan Derivative 12 from Pyroglutamate

The Journey Continues...

Scheme 3. Enantioselective total synthesis of stephacidin A (1). Reagents and conditions: a) 13 (1.5 equiv), BOPCI (1.1 equiv), iPr₂EtN (1.1 equiv), CH₂Cl₂, 0→25 °C, 10 h, 62%; b) [Pd₂(dba)₃] (0.2 equiv), Et₃SiH (40 equiv), Et₃N (2.0 equiv), CH₂Cl₂, 25 °C, 4 h; then MeOH, reflux, 30 min; then toluene, reflux, 2 h, 53% overall; c) NaH (1.2 equiv), MOMCI (1.1 equiv), DMF, 0°C, 1 h, 65%; d) TBAF (3.0 equiv), THF, 25°C, 1 h; then DMP (1.5 equiv), CH₂Cl₂, 25°C, 2 h; then 2-methyl-2-butene (20 equiv), NaH₂PO₄·H₂O (3.0 equiv), NaClO₂ (2.8 equiv), THF, H₂O, 20 min; then CH₂N₂ in Et₂O, MeOH, 5 min, 69% overall; e) LDA (2.2 equiv), THF, −78°C, 5 min then [Fe(acac)₃] (2.2 equiv), THF, −78→25°C, 1 h, 41% 17 with 15% recovered 16; f) B-bromocatecholborane (1.5 equiv), CH₂Cl₂, 0°C, 1.5 h, 63%; g) MeMgBr (6.0 equiv), toluene, 25°C, 1 h, then Burgess reagent (2.0 equiv), benzene, 50°C, 30 min, 88% overall; h) 200°C, 1 h, 45% 1 with 10% recovered 19. BOP = bis(2-oxo-3-oxazlidiryl)phosphinic chloride; dba = trans,trans-dibenzylideneacetone; MOM = methoxymethyl; TBAF = tetra-n-butylammonium fluoride; DMP = Dess-Martin periodinane; LDA = lithium diisopropylamide; acac = acetylacetonate.

Oxidative Coupling of the Model Ester

Scheme 4. Stereocontrolled intramolecular oxidative coupling of the model ester **21**. Reagents and conditions: a) LDA (2.5 equiv), THF, $-78\,^{\circ}$ C, 30 min then [Fe(acac)₃] (2.5 equiv), THF, $-78\,^{\rightarrow}$ 25 °C, 1 h, 52% b) *B*-bromocatecholborane (2.0 equiv), CH₂Cl₂, 0 °C, 1 h, 87%.

The Journey Continues...

Scheme 3. Enantioselective total synthesis of stephacidin A (1). Reagents and conditions: a) 13 (1.5 equiv), BOPCI (1.1 equiv), iPr₂EtN (1.1 equiv), CH₂Cl₂, 0→25 °C, 10 h, 62%; b) [Pd₂(dba)₃] (0.2 equiv), Et₃SiH (40 equiv), Et₃N (2.0 equiv), CH₂Cl₂, 25 °C, 4 h; then MeOH, reflux, 30 min; then toluene, reflux, 2 h, 53% overall; c) NaH (1.2 equiv), MOMCI (1.1 equiv), DMF, 0°C, 1 h, 65%; d) TBAF (3.0 equiv), THF, 25°C, 1 h; then DMP (1.5 equiv), CH₂Cl₂, 25°C, 2 h; then 2-methyl-2-butene (20 equiv), NaH₂PO₄·H₂O (3.0 equiv), NaClO₂ (2.8 equiv), THF, H₂O, 20 min; then CH₂N₂ in Et₂O, MeOH, 5 min, 69% overall; e) LDA (2.2 equiv), THF, −78°C, 5 min then [Fe(acac)₃] (2.2 equiv), THF, −78→25°C, 1 h, 41% 17 with 15% recovered 16; f) B-bromocatecholborane (1.5 equiv), CH₂Cl₂, 0°C, 1.5 h, 63%; g) MeMgBr (6.0 equiv), toluene, 25°C, 1 h, then Burgess reagent (2.0 equiv), benzene, 50°C, 30 min, 88% overall; h) 200°C, 1 h, 45% 1 with 10% recovered 19. BOP = bis(2-oxo-3-oxazlidiryl)phosphinic chloride; dba = trans,trans-dibenzylideneacetone; MOM = methoxymethyl; TBAF = tetra-n-butylammonium fluoride; DMP = Dess-Martin periodinane; LDA = lithium diisopropylamide; acac = acetylacetonate.

The Final Step

Conclusions

"The first total synthesis of Stephacidin A was completed.

A general methodology for the rapid and practical synthesis of tryptophan derivative from pyroglutamate

A remarkable deprotection/annulation cascade which occurs simply with heat to forge the final ring $(18\rightarrow 1)$,

◆ A simple, stereocontrolled assembly of two of the three stereocenters of 1 by a rare intramolecular oxidative coupling (16 \rightarrow 17 and 21 \rightarrow 22). This set of transformations proceeds cleanly and represents first such couplings of esters to amides.