Total Synthesis of TMC-95A and -B via a New Reaction Leading to Z-Enamides.

Songnian Lin, Zhi-Qiang Yang, Benjamin H. B. Kwok, Michael Koldobskiy, Craig M. Crews, and Samuel J. Danishefsky*

J. Am. Chem. Soc. 2004, 126, 6347-6355

Related References:

Early works:

Angew. Chem. Int. Ed. 200,1 40, 1967 (core synthesis) Angew. Chem. Int. Ed. 200,2 41, 512 (total synthesis) J. Am. Chem. Soc. 200,3 125, 5111 (computation)

Other finished synthesis:

Hirama, Masahiro et al. *Angew. Chem. Int. Ed.* **2003**, *42*, 2654 Williams, Robert et al. *Org. Lett.* **2003**, *5*, 197

Yu Zhang

August 26, 2004

Introduction to TMC-95 Family

Figure 1. Structures of TMC-95A-D.

- Isolation: Isolated as fermentation products of Apoispora Montagnei in 2000.
- Biological Activity: TMC-95A inhibited the chymotrypsin-like, trypsin-like, and postglutamyl peptide hydrolytic activities of proteasome with IC₅₀ of 5.4, 200 and 60 nM. Also showed cytotoxic activities against human cancer cells HCT-116 & HL-60 with IC₅₀ of 4.4 and 9.8µM.

Structural Characteristics of TMC-95A

Danishefsky, S. et al. J. Am. Chem. Soc. 2004, 126, 6347.

William's Synthetic Strategy

Williams, Robert et al. Org. Lett. 2003, 5, 197

Hirama's Synthetic Strategy

Hirama, Masahiro et al. Angew. Chem. Int. Ed. 2003, 42, 2654.

Danishefsky's Synthetic Strategy

Attempted Synthesis of 7-Bromooxindole 2a

Conditions:

(a) (1) DIBAL/toluene, -78°C, 1 h; (2) methyl (triphenylphosphoranylidine)acetate, CH₂Cl₂, rt, 88%;

- (b) (1)LiOH , THF/MeOH/H₂O, (2) TBSCI, Et₃N/DMAP, (3) (COCI)₂, DMF (cat.);
- (c) 2,6-dibromoaniline, NaHDMF/THF, 75 °C, 1.5 h, 44%;

(d) [Pd(PPh₃)₄] or Pd(OAc)₂, 5-15%.

Synthesis of 7-lodooxindole 2b

Conditions:

(a) (1) MeOH/SOCI₂, (2) CbzCl, K_2CO_3 , H_2O /acetone, 96% (two steps);

(b)LiOH , Me₂SO₄, 86%;

(c) I₂, Ag₂SO₄, MeOH, rt, 1.5 h, 93%;

(d)bis(pinacolato)diboron , [PdCl₂(dppf)]·CH₂Cl₂, KOAc, DMSO, 80°C, 13 h, 95%

Biaryl Linkage Formation by Suzuki Coupling

Conditions: (a)**3a** , [PdCl₂(dppf)]·CH₂Cl₂, KOAc, DME, 80°C, 2 h, 72% (*E*/*Z* ~ 2/1); (b) l₂ (cat.), DME, 80°C, 1 d, 87% (63% conv).

Synthesis of Diols 24

(a)LiOH, THF/MeOH/H₂O; (b) hydroxysuccinimide, DCC, THF, 55% (two steps);

(c) \downarrow Asn·H₂O, Et₃N, THF/H₂O, rt, 4 h, 70%;

(d)LiOH, THF/H₂O, 0°C, 1.5 h; (e) H-Asn-O-*t*-Bu, EDC/HOAt, THF, rt, 2 h, 70% (two steps); (f) HF/Py, 84%; (g) for**23a** : OsO₄/NMO, (DHQD)₂PHAL, *t*-BuOH/H₂O, rt, 1 h, 84% (*S*/*R* ~ 1/1.8);

for23b : (1) OsO₄/NMO, (DHQ)₂PHAL, *t*-BuOH/H₂O, rt, 4 h, (2) TIPSCI, imidazole/DMAP, 5 h, 81% (S/R ~ 1/1.8);

Identification of Absolute Configuration of 24

Macrolactamization of (S)-24

Conditions: (a) TFA/CH₂Cl₂ (4:1), rt, 2 h; (b) EDC, HOAT, DIEA, CH₂Cl₂/DMF (4/1, 4 mM), 20 h, 55% (two steps).

Treatment of 24R under same condition did not afford any cyclization product.

Synthesis of Macrolactam 6b

Conditions:

(a) LDA (2.0 equiv), THF, -78°C, 1.5 h; then Et_3N , MsCl, CH_2Cl_2 , -70 to -50°C, 1.5 h, 81% (*E*/*Z* = 1.3/1); (b) I_2 (cat.), benzene, 80°C, 26 h; DMP/PPTS, toluene, 65°C, 5 h; 85% (60% conv);

- (c) $\overline{M}eOH/SO_2CI_2$; (d) $CbzCI/K_2CO_3$; (e) BnBr, Cs_2CO_3 , acetone, reflux, 88% (three steps);
- (f) Ag₂SO₄/I₂, MeOH, rt, 1 h, 99%;
- (g) pinacolatodiborane, [PdCl₂(dppf)]CH₂Cl₂, K₂CO₃, DME, 80°C, 10 h, 91%;
- (h) (*E*)-**2c**, [PdCl₂(dppf)]CH₂Cl₂, K₂CO₃, DME, 80°C, 2 h, 75%;

Synthesis of Macrolactam 6b

(i) (1) LiOH, THF/H₂O, 0°C, 1.5 h, (2) H-Asn-O-*t*-Bu, EDC/HOAT, THF, rt, 2 h, 85% (two steps); (j) OsO_4/NMO , $(DHQD)_2PHAL$, *t*-BuOH/H₂O, rt, 12 h, 88% (dr = 5:1); (k) (1) PPTS/MeOH, reflux, 2 h; (l) TIPSCI, imidazole/DMAP, CH_2CI_2 , rt, 5 h, 88% (two steps); (m) (1) TFA/CH₂CI₂ (4:1), rt, 2 h, (2) EDC/HOAT/DIEA, CH_2CI_2/DMF (2 mM), rt, 24 h, 36%.

Reported cis-Enamide Formations

Isomerization of N-allylamides.
 Stille, J. K.; Becker, Y. J. Org. Chem. 1980, 45, 2139.

Curtius rearrangement.
 Kitahara, T. et al. Synlett. 2000, 3, 397.

♦ Anti-elimination of good leaving group.

I) H₂, Pd(OH)₂/C, THF/H₂O (1:2);
m) DEAD, PPh₃, 4-A MS, 0°C to room temperature, 59% from **27**;

Hirama, M. et al. Angew. Chem. Int. Ed. 2003, 42, 2654.

Proposed Stratege for *cis*-Enamide Formations

- It was proposed that 34 might undergo concurrent ene- and silatropic-like bond reorganizations that would lead to 35.
- Key step is the transfer of TES from C to O, N-protonation of **35** necessary.
 - Synthesis of α-silyl Allylamine

Rearrangement-Hydrolysis of α -Silylallyl Amide 34

Completion of the Synthesis of TMC-95A/B

(a) (1) Pd/C, H₂, EtOH rt, 19 h, (2) (±)-3-methyl-2-oxopentanoic acid (**5**), EDC/HOAT, CH₂Cl₂/DMF, rt, 2 h, 85% (two steps);

(b) (1) HF/Py, (2) TESOTf, 2,6-lutidine, CH_2CI_2 , 0°C to rt, 15 h, (3) NaHCO₃, (4) citric acid, EtOAc/H₂O, 73% (c) (1) Jones reagent, acetone, 0°C, 2 h, (2) **39**, EDC/HOAT, CH_2CI_2/DMF , rt, 13 h, 45% (two steps);

(d) (1)o -xylene, 140°C, 3 d, (2) HF/py, THF/py, then Me₃SiOMe, 49% (two steps).

Synthesis of Analogues

(a) Pd/C, H₂, EtOH rt, 19 h; (b) **44**, EDC/HOAT, CH_2CI_2/DMF , rt, 2 h, 57% (two steps); (c) (1) HF/Py, (2) TESOTf, 2,6-lutidine, CH_2CI_2 , 0°C to rt, 15 h, (3) NaHCO₃, (4) citric acid, EtOAc/H₂O, 56% (d) (1) Jones reagent, acetone, 0°C, 2 h, (2) allylamine or *n*-propylamine, EDC/HOAT, CH_2CI_2/DMF , rt, 13 h; (e) HF/py, THF/py; then Me₃SiOMe, 39% for **47**, 32% for **48** (three steps).

Proteasome Inhibition Studies

	$K_{\rm iapp} = [I]/(v_{\rm o}/v_{\rm s}) - 1]^{b}$		
	CT-L activity (nM)	PGPH activity (nM)	TL activity (μΜ)
TMC-95A (1a)	1.1	29	0.8
TMC-95B (1b)	1.7	23	1.1
47	1.9	23	1.2
48	24	110	13

Table 5. Inhibition Constants (K_{lapp}) of Catalytic Activities of the Proteasome by Synthetic Inhibitors^{*a*}

^{*a*} The concentrations required for inhibition of the three proteasome catalytic activities were determined for TMC-95A and -B and their synthetic analogues. ^{*b*} The value v_0 is the rate of enzyme activity in the absence of inhibitors, and v_s is the steady rate of inhibited enzyme activities.

On the Mechanism of *cis*-Enamide Formation

- Silyl imidates **35** was observed by ¹H-NMR analysis.
- Density functional calculations of the intermediates and TS suggested a stepwise dyotropic rearrangement mechanism involving sequential 1,4silyl (fast, reversible) and 1,4-hydrogen shifts (rate determining)
- This mechanism explained well why reactions are much slower when R = alkyl.

Houk, K. N.; Danishefsky, S. et al. J. Am. Chem. Soc. 2003, 125, 5111.

Summary

