Literature Presentation

Highly Enantioselective Catalytic Acyl-Pictet-Spengler Reaction

Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, ASAP.

For Review of Pictet-Spengler Reaction:

Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797.

Yiqian Lian

8-12-04

Introduction to Pictet-Spengler Reaction

Pictet, A.; Spengler, T. Ber. Dtsch. Chem. Ges. 1911, 44, 2030.

- " The reaction was originally utilized exclusively to prepare tetrahydroisoquinolines;
- " Represented an established biosynthetic pathway;
- " A standard method for the formation of tetrahydroisoquinolines.

For review: Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797.

Introduction to Pictet-Spengler Reaction

Tatsui, G. J. Pharm. Soc. Jpn. 1928, 48, 92.

- " Preparation of 1-methyl-1,2,3,4-tetrahydro-β-carboline with an indole base.
- " An important method in the synthesis of indole alkaloid natural products.

For review: Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797.

Some Indole Alkaloid Natural Products

More Examples of Indole Alkaloid Natural Products

Mechanism of the Pictet-Spengler Condensation

Pictet-Spengler Reaction in Nonacidic Aprotic Media

amine	R	\mathbb{R}^2	aldeyde	product	R1	aprotic % yield	aqueous % yield
17	H	H	18	20	Ph	95	90
17	H	H	23	25	C_6H_1	85	73
21	H	$_{\rm Bn}$	18	26	Ph	95	
21	H	Bn	23	27	C_6H_{11}	87	
22	CH_3	$_{\mathrm{Bn}}$	23	28	C ₆ H ₁₁	87	68
21	H	Bn	24	29	$CH_2CH_2CO_2C_2H_5$	80	50

[&]quot; Heated in benzene at reflux, without the aid of acid catalysts.

Cook, J. M. et al. JOC **1979**, *44*, 535.

Diastereoselective Pictet-Spengler Reaction

Koomen. et al. OL **2000**, *2*, 1955.

Chiral N-protective Group

no.	R	yield (%) <i>a</i>	ee^b	[α] _D
(-)-18	methy1	89	>98%	-44.0^{c}
(-)-19	ethyl	93	>98%	-62.6
(-)- 20	propy1	91	>98%	-30.0
(-)-21	butyl	93	>98%	-65.8
(-)-22	penty1	82	>98%	-40.0
(-)-23	isobutyl ²³	90	>98%	-47.1
(-)-24	isopropyl	93	>98%	-58.3
(-)-25	cyclohexyl	86	>98%	-68.5

^a After chromatography. ^b As determined with ¹H NMR using (R)-1-(9-anthryl)-2,2,2-trifluoroethanol. ^c Lit. (S)-18: [α]_D = $-41.^{24}$

Chiral Aldehyde

Czarnocki, et al Tet. Asym. 1995, 6, 2899.

(S)-(+)-N-methylcalycotomine 91% yield, 92% ee

Diastereoselective Pictet-Spengler Reaction of Tryptophan Esters

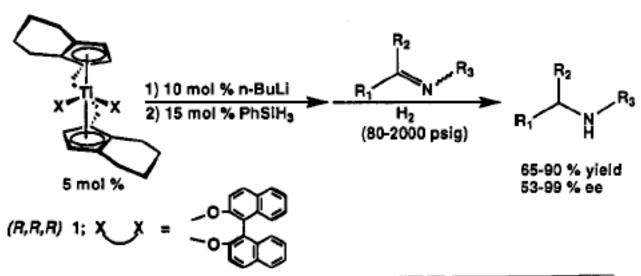
172

D-(+)-Tryptophan

172

For detailed discussions:

Cook, J. M. et al JOC **1997**, *62*, 44-61 and references therein.


NaH/CH3OH

PhCH_{3,} A

(92%)

Enantioselective, Catalytic Approaches

Mostly restricted to asymmetric hydrogenation of cyclic imines

Entry	lmine	Amine	Pressure (psig)	(° C)	Yield (%)	●8 (%)	(1)
4	CH40 N	CH ₂ O NH	2000 80	65 65	82 79	98 95	(-) (-)
5	CH,	√N CH4	500 80	23 65	83 72	99 99	(+) (+)
6	CH ₉	or*	80	50	79	99	(+)

Buckwald, et al. JACS 1994,116, 8952.

Enantioselective, Catalytic Approaches

Pictet-Spengler Reaction of Nitrones Catalyzed by (+)-lpc2BCl

One example of a chiral Lewis acid-mediated Pictet-Spengler reaction;

1: R = Ph

2: $R = p\text{-MeO-C}_6H_4$

3: $R = p - NO_2 - C_6H_4$

4: R = 1-Naphthyl

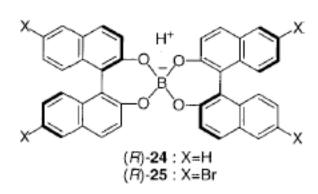
5: R = Me 6: R = *i*-Bu 9: R = Ph

15: $R = p \cdot MeO \cdot C_6H_4$

16: R = p-NO₂-C₆H₄ 17: R = 1-Naphthyl

18: R = Me

19: R = /-Bu


Nakagawa, et al. JOC 1998, 6348.

			eta-carboline		
entry	nitrone	time (h)	yield (%)	% ee	
1	1	6	9 (92)	75 (S)	
2	2	3	15 (65)	90 (S)	
3	3	1	16 (81)	0.6	
4	4	1	17 (94)	86 (S)	
5	5	3	18 (91)	43 (S)	
6	6	4	19 (75)	35 (S)	

Nitrones Catalyzed by Bronsted Acid-Assisted Lewis Acids

3:
$$R = p - NO_2 - C_6H_4$$

15: R =
$$p$$
-MeO-C₆H₄
16: R = p -NO₂-C₆H₄

		Lewis	results		recovery of
entry	nitrone	acid	yield (%)	% ee ^a	nitrone (%)
1	1	(R)-24	9 (81)	73 (S)	18
2	2	(R)-24	15 (39)	91 (S)	44
3	3	(R)-24	16 (75)	74 (S)	8
4	4	(R)-24	17 (59)	31 (S)	26
5	5	(R)-24	18 (94)	15 (R)	
6	6	(R)-24	19 (68)	50 (S)	14
7	1	(S)-24	9 (82)	78 (R)	7
8	1	(R)-25	9 (84)	77 (S)	

Nakagawa, et al. JOC 1998, 6348.

- The only reported example of a chiral Lewis acid-mediated (reagent-controlled enantioselective) Pictet-Spengler reaction;
- Used superstoichiometric quantities of an enatioenriched boron reagent;
- Limited to N_{β} -hydroxytryptamine-derived nitrones.

The Challenge for an Asymmetric Catalytic Variant

- "The challenge appears to be associated with the low reactivity of the imine substrate;
- "Most often, strong Bornsted acids are employed to promote the racemic pathway; the few reported examples of Lewis acid catalysis involve highly reactive agents, unmodified by donor ligands. In addition, high reaction temperatures are often required.
- "A screen of potential chiral catalysts for this transformation did not afford any useful leads; (Catalysts: chiral ureas and thioureas, (salen)aluminum complexes and other chiral ligand-metal complexes; Substrates: derived from condensation of aromatic and aliphatic aldehydes with tryptamines and electron-rich arylethyl amines.)
- " More reactive variants are needed to proceed under relatively mild conditions;

The Possible Solution ...

"A general strategy for enhancing the reactivity in processes involving imine or iminium intermediates involves generation of the corresponding *N*-acyliminium ions.

Chiral thiourea catalyst?

Optimization of Thiourea Catalyst Structure

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{AcCl (1.0 equiv.)} \\ \hline \\ \text{2,6-lutidine (1.0 equiv.)} \\ \text{CH(CH$_2$CH$_3$)$_2 Et$_2$O, -78^{\circ}$C} \rightarrow -30$^{\circ}$C \\ \end{array} \\ \begin{array}{c} \text{N} \\ \text{CH(CH$_2$CH$_3$)$_2} \\ \hline \\ \text{3a} \end{array} \\ \end{array} \\ \begin{array}{c} \text{NAc} \\ \text{CH(CH$_2$CH$_3$)$_2} \\ \end{array}$$

catalyst	yield (%)ª	ee (%)b	
1a	65	59	
1b	45	61	
1c	65	77	
1d	55	71	
1e	70	93	
1f	70	93	

Highly Enantioselective Catalytic Acyl-Pictet-Spengler Reaction

Table 2. Asymmetric Acyl-Pictet—Spengler Reactions Catalyzed by 1f

1) R'CHO (1.05 equiv.)
3Å MS
$$or \text{Na}_2\text{SO}_4$$
2) AcCl (1.0 equiv.)
2,6-lutidine (1.0 equiv.)
1f (5-10 mol%)
Et₂O, $-78^{\circ}\text{C} \rightarrow \text{T}^{\circ}\text{C}$

product	R	R′	T (°C)	yield (%)ª	ee (%) ^b
3a	Н	$CH(CH_2CH_3)_2$	-30	65c	93
3 b	Н	$CH(CH_3)_2$	-40	67d	85
3c	Н	n-C ₅ H ₁₁	-60	65 ^d	95
3d	Н	$CH_2CH(CH_3)_2$	-60	75 ^d	93
3e	Н	CH ₂ CH ₂ OTBDPS	-60	77^d	90
3f	5-MeO	$CH(CH_2CH_3)_2$	-40	81^c	93
3g	6-MeO	$CH(CH_2CH_3)_2$	-50	76 ^d	86

1f: R = i-Bu, R' = CH₃, R" = Ph

Still Much Work to Be Done...

- "Highly enantioselective catalytic acyl-Pictet-Spengler reaction was achieved.
- "The ability to activate a weakly Lewis basic N-acyliminium ion toward enantioselective Pictet-Spengler reaction using a chiral hydrogen donor presents new opportunities for catalysis.
- " The mechanism of the transformation?
- " The scope of the reaction?
- "Application of the enantioselective reaction in indole alkaloid synthesis...