The tethered Biginelli condensation in natural product synthesis

Zachary D. Aron and Larry E. Overman*

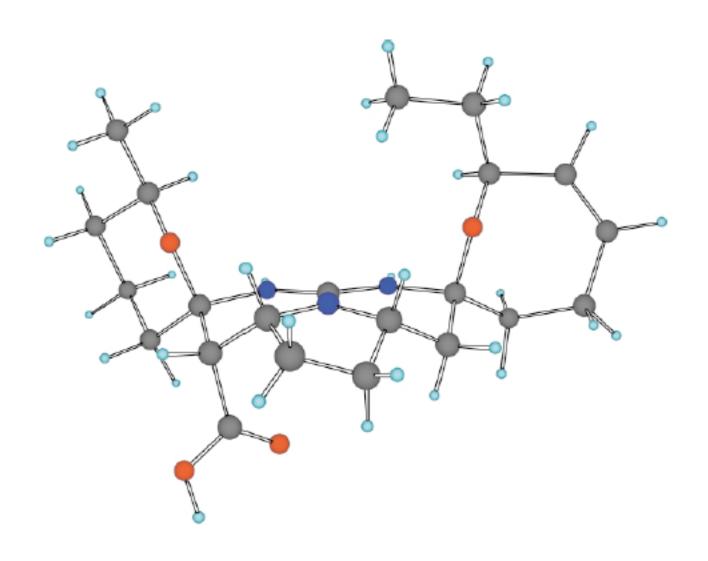
Department of Chemistry, 516 Rowland Hall, University of California, Irvine, California 92697-2025, USA. E-mail: leoverman@uci.edu; Tel: 949-824-7156; Fax: 949-824-3866

Received (in Cambridge, UK) 19th August 2003, Accepted 1st October 2003 First published as an Advance Article on the web 27th October 2003

Guanidine Alkaloids from Marine Sponges

R = H, ptilomycalin A (1) R = OH, crambescidin 800 (2)

13, 14, 15-isocrambescidin 800 (3)


Guanidine Alkaloids from Marine Sponges Continued

HN
$$\frac{1}{N}$$
 $\frac{1}{N}$ \frac

batzelladine B (5); R =
$$n-C_7H_{15}$$

batzelladine F (6)

Model of the Pentacyclic Crambescidin Core

Retrosynthetic Analysis of Crambescidin 800/ Ptilomycalin A

The Three Component Construction of Dihydropyrimidinones

Mechanism of the Biginelli Condensation

The Tethered Biginelli Condensation

HO
$$O_3$$
, -78 °C O_3 , -78 °

.CO₂R¹

.CO₂R¹

18

HO

piperidine/CH₂Cl₂: 50%, *cis:trans* = 5:1

morpholine/CF₃CH₂OH: 80%, cis:trans = 4:1

A Stepwise Tethered Biginelli Condensation

CHO
$$R^{"}$$
NH
$$Piperidine$$

$$pyridine$$

$$R = CH2CH2OTIPS$$

$$O$$

$$CO2Me$$

$$Piperidine$$

$$Piperi$$

Tunning Selectivity

22,
$$X = NH_2^+$$

23,
$$X = NSO_2Ar$$

24,
$$X = NH_2^+$$

25,
$$X = NSO_2Ar$$

18,
$$X = O$$

26,
$$X = NH_2^+$$

27,
$$X = NSO_2Ar$$

(Ar= 2,3,6-trimethyl-4-methoxybenzene)

Cond	itions	X = O	$X = NH_2^+$	X = NSO ₂ Ar
	OH, 60 °C ne-HOAc	80%, 4:1 (17:18)	42%, (26)	61%, 6:1 (25:27)
PPE, CH	₂ Cl ₂ , 23 °C	60%, 1:4 (17 : 18)	N/A	61%, 1:20 (25:27)

Stereorationale of Tethered Biginelli

Imminium Ion Pathway

+HY H NH₂ +HY NH₂ 35 -HY X NH₂ 28, X = O, NSO₂Ar, NH•HCI

30

31

35,
$$Y = N(CH_2CH_2)_2O$$

Knoevenagel Pathway

32

$$H_{N}$$
 H_{N}
 H_{N

33

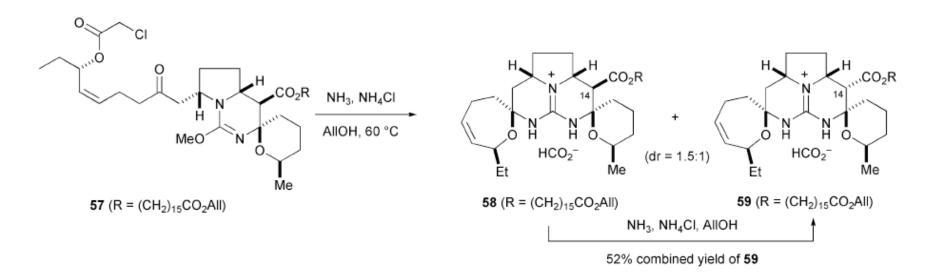
$$-H_2O$$
 N
 CO_2R

34

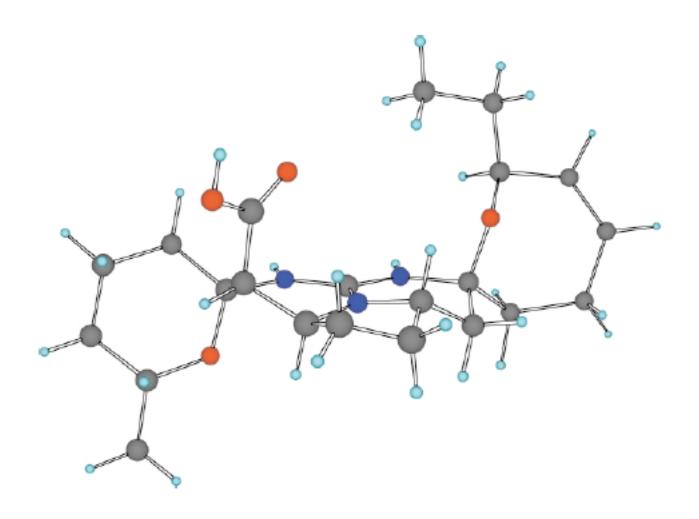
Copper-Initiated Tethered Biginelli Condensation

Bn
$$H_{2N}$$
 H $CO_{2}R$ H_{2N} H OTF H_{2N} H OTF OTF OTF OTF

Cyclocondensations of N-Amidinyliminium Ions


Bn
$$H_2$$
 SPh alkene, $Cu(OTf)_2$ $H_2N Cl^ NH_2$ CH_2Cl_2 , $0 °C$

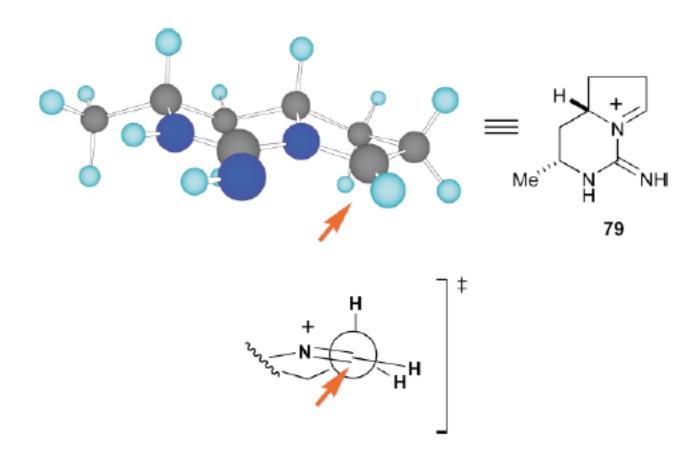
41, 83%


Application in the Total Synthesis of Ptilomycalin A

Application in the Total Synthesis of Crambescidin 800

Application in the Total Synthesis of Crambescidin 800 Continued

Model of the Isocrambescidin Core



Application to the total Synthesis of 13,14,15-Isocrambescidin 800

Strategies for Triazaacenapthalene Synthesis

Synthesis of Batzelladine B Methyl Ester

Rationale for Stereochemistry

Batzelladine F and Incorrect Earlier Proposed Structures

Batzelladine F (6)

$$n-C_9H_{17}$$

structure originally proposed in 1997

82 one of several possible structures circa 1999

Fragment Coupling Tethered Biginelli Strategy for Preparing Batzelladine F

Synthesis of the Right Hand Portion of Batzelladine F

Proposed Decarboxylation Mechanism

Completion of the Total Synthesis of Batzelladine F

Completion of the Total Synthesis of Batzelladine F Continued

$$n-C_7H_{15}$$

21%, batzelladine F (6)

Synthetic Analogs of Batzelladine F

$$n-C_7H_{15}$$