## Ionic Liquids (IL's): An Ionic Liquid-Supported Ruthenium Carbene Complexes for RCM in Ionic Liquids

J. Am. Chem. Soc. 2003, 125, 9248-49 Angew. Chem. Int. Ed. 2003, 42, 3395-3398

Literature presentation

By

P. V. Reddy

## What are ionic liquids?

Quite simply, they are liquids that are entirely composed by ions.

The term ionic liquid, in contrast, implies a material that is fluid at (or close to) ambient temperature, is colorless, has a low viscosity and is easily handled, i.e. a material with attractive properties for a solvent.



anions:  $BF_4^-$ ,  $PF_6^-$ ,  $SbF_6^-$ ,  $NO_3^-$ ,  $CF_3SO_3^-$ ,  $(CF_3SO_3)_2N^-$ , ArSO<sub>3</sub><sup>-</sup>,  $CF_3CO_2^-$ ,  $CH_3CO_2^-$ ,  $Al_2Cl_7^-$ 

Fig. 1 Structure of ionic liquids







# **Catalysis in ionic liquids: general considerations:**

Room temperature ionic liquids (**RTIL's**) exhibit many properties which make them potentially attractive media for homogeneous catalysis:

- \* They have essentially no vapour pressure, *i.e.* they do not evaporate and are easy to contain.
- \* They generally have reasonable thermal stability. (upto 300-400 °C)
- \* They are able to dissolve a wide range of organic, inorganic and organometallic compounds.
- \* The solubility of gases, *e.g.* H<sub>2</sub>, CO and O<sub>2</sub>, is generally good which makes them attractive solvents for catalytic hydrogenations, carbonylations, hydroformylations, and aerobic oxidations.
- \* They are immiscible with some organic solvents, *e.g.* alkanes, and, hence, can be used in two-phase systems. Similarly, lipophilic ionic liquids can be used in aqueous biphasic systems.
- \* Polarity and hydrophilicity/lipophilicity can be readily adjusted by a suitable choice of cation/anion and ionic liquids have been referred to as 'designer solvents'.
- \* They are often composed of weakly coordinating anions, *e.g.*  $BF_4$  and  $PF_6$  and, hence, have the potential to be highly the ionic liquid.

## **Historical Background:**

- \* They are known since 1914 [(Et<sub>3</sub>N(NO<sub>3</sub>)] but contains a small amount of water (200-600ppm)
- \* First ionic liquid with chloroaluminates 1948 by Hurly and Wier at the Rice Institute, Texas
- \* In 1967, 'Swain et al tetra-*n*-hexylammonium benzoate as a solvent for kinetic and electrochemical studies
- \* 1980s the group of Seddon and Hussey-used chloroaluminate melts as a nonaqueous, polar solvents for –transition metal complexes
- \* 1980s-used for Friedal-Crafts reactions

\* 1990 by Chauvin et al. and by Wilkes et al. dissolved Ni catalysts in weakly acidic chloroaluminate melts –used it for dimerization of propene, ethylene and Ziegler-Natta catalysts

\* 1995---

## **Synthesis of BMIM.PF<sub>6</sub>:**



#### Purification Technique for the Removal of Ruthenium from Olefin Metathesis Reaction Products

Heather D. Maynard and Robert H. Grubbs\*

The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125



Tetrahedron Letters 40 (1999) 4137-4140

## A Recyclable Ru-Based Metathesis Catalyst Jason S. Kingsbury, Joseph P. A. Harrity,# Peter J. Bonitatebus, Jr., and Amir H. Hoveyda\*

Contribution from the Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467



J. Am. Chem. Soc. 1999, 121, 791-799

## **General Mechanism:**



### **Ruthenium-Catalyzed Olefin Metathesis in Ionic Liquids** Rogier C. Buijsman,\* Elizabeth van Vuuren, and Jan Gerard Sterrenburg *Lead DiscoVery Unit, N.V. Organon, P.O. Box 20, 5340 BH Oss, The Netherlands*





**Table 1.** Conversions of RCM<sup>a</sup> in Different (Mixtures of)Ionic Liquids and Ru Contaminant Level in RCM Product 5

| entry          | solvent | ratio<br>(v:v) | convn<br>(%) <sup>b</sup> | Ru residue,<br>µg/mg |
|----------------|---------|----------------|---------------------------|----------------------|
| 1 <sup>c</sup> | DCM     |                | 100                       | 1.7                  |
| 2              | 3b      |                | 98                        | 3.2                  |
| 3              | 3b:3a   | 1:1            | 95                        | 9.7                  |
| 4              | 3b:3d   | 1:1            | 77                        | 5.2                  |
| 5              | 3b:3c   | 2:1            | 77                        | 6.3                  |
| 6              | 3b:3e   | 2:1            | 81                        | 5.4                  |
| 7              | 3b:3c   | 3:1            | 92                        | 5.2                  |
| 8              | 3b:3e   | 3:1            | 69                        | 3.6                  |

<sup>*a*</sup> All reactions were performed at 50 °C, a substrate concentration of 55 mg/mL, and 5 mol % of **1** for 24 h. <sup>*b*</sup> Conversions were measured after extraction with diethyl ether and subsequent HPLC analysis. <sup>*c*</sup> Reaction in DCM was evaporated after 1 h, and product was purified using silica column chromatography.

| 3a R=butyl, X=BF <sub>4</sub> | 3c R=octyl, X=BF <sub>4</sub> |
|-------------------------------|-------------------------------|
| 3b R=butyl, X=PF6             | 3d R=octyl, X=PF6             |

3d R=octyl, X=PF<sub>6</sub> 3e R=octyl, X=SbF<sub>6</sub>

X

*OL, 2001, 3, 3785* 

| entry | temp (°C) | convn (%) <sup>b</sup> |
|-------|-----------|------------------------|
| 1     | 50        | 30                     |
| 2     | 60        | 68                     |
| 3     | 70        | 88                     |
| 4     | 80        | 100                    |
| 5     | 90        | 100                    |
| 6     | 100       | 100                    |

**Table 2.** Influence of Temperature on RCM in  $[bmim]PF_6^a$ 

<sup>*a*</sup> Reactions were performed using **4** with a concentration of 55 mg/mL and 5 mol % of **1** for 1 h. <sup>*b*</sup> Conversions were measured after extraction with diethyl ether and subsequent HPLC analysis.

| entry | catalyst | recycling | convn (%) <sup>b</sup> | Ru residue,<br>µg/mg |
|-------|----------|-----------|------------------------|----------------------|
| 1     | 1        |           | 97                     | 3.9                  |
| 2     | 1        | entry 1   | 94                     | 4.8                  |
| 3     | 1        | entry 2   | 61                     | 5.3                  |
| 4     | 2        |           | 95                     | 1.6                  |
| 5     | 2        | entry 4   | 88                     | 1.6                  |
| 6     | 2        | entry 5   | 74                     | 1.3                  |

**Table 3.** Recycling of **1** and **2** and Ru Contaminant Level in RCM Product **5**<sup>*a*</sup>

<sup>*a*</sup> All reactions were performed at 80 °C, a substrate concentration of 30 mg/mL, and 5 mol % of catalyst for 1 h. <sup>*b*</sup> Conversions were measured after extraction with ether and subsequent HPLC analysis.

An Ionic Liquid-Supported Ruthenium Carbene Complex: A Robust and Recyclable Catalyst for Ring-Closing Olefin Metathesis in Ionic Liquids

Nicolas Audic, Herve' Clavier, Marc Mauduit,\* and Jean-Claude Guillemin\*

Laboratoire de Synthe`ses et ActiVations de Biomole'cules, UMR CNRS 6052,

*Ecole Nationale Supe'rieure de Chimie, Institut de Chimie de Rennes, 35700 Rennes, France* 



J. Am. Chem. Soc. 2003, 125, 9248-49

#### Scheme 1. Synthesis of IL Catalyst 10<sup>a</sup>





<sup>*a*</sup> Reaction conditions: (*a*) 2.2 equiv NaH, 2.2 equiv i-PrI, DMF, THF, rt, 90%. (*b*) 1.05 equiv Br<sub>2</sub>, 0.04 equiv HOAc,  $CH_2Cl_2$ , rt, 98%. (*c*) 1 equiv LiAlH<sub>4</sub>, THF, 0 °C, 95%. (*d*) 1.5 equiv Bu<sub>3</sub>SnCHCH<sub>2</sub>, 3 mol % Pd(PPh<sub>3</sub>)<sub>4</sub>, toluene, 110 °C, 75%. (*e*) 1.5 equiv Et<sub>3</sub>N,  $CH_2Cl_2$ , 0 °C to rt. (*f*) 2 equiv LiBr, THF, DMF, rt, 74% overall for two steps. (*g*) 2 equiv 1-methylimidazole, toluene 110 °C. (*h*) HPF<sub>6</sub>, H<sub>2</sub>O, 0 °C, 87% overall for two steps. (*i*) 1.5 equiv 1, 1.25 equiv CuCl,  $CH_2Cl_2$ , rt, 78%. **Table 1.** Comparative Recycling and Reuse in  $BMI.PF_6$  of IL Catalyst 10and Catalysts 1 and 4 in the RCM of Diene 11

|                     | ~ .              | Ts<br>N. A |               | (2. | Catalyst<br>5 mol%) | )  |    | اح | Ts<br>N |                 |
|---------------------|------------------|------------|---------------|-----|---------------------|----|----|----|---------|-----------------|
| <i>≱</i> √"√≶<br>11 |                  |            | BMI.PF<br>60° |     | \/<br>12            |    |    |    |         |                 |
|                     | cycle (% conv.ª) |            |               |     |                     |    |    |    |         |                 |
| catalyst            | 1                | 2          | 3             | 4   | 5                   | 6  | 7  | 8  | 9       | 10 <sup>b</sup> |
| 10                  | >98              | >98        | >98           | >98 | >98                 | 96 | 92 | 92 | 92      | 95              |
| 1                   | >98              | 20         | _             | _   | _                   | _  | —  | —  | _       | _               |
| 4                   | >98              | 40         | 20            | _   | _                   | —  | _  | —  | _       | —               |

<sup>a</sup> Determined by <sup>1</sup>H NMR spectroscopy analysis. <sup>b</sup> **13** as starting material.





Table 2. Recyclability of IL-cat 10 in Various RCM Reactions



<sup>*a*</sup> **10** (2.5 mol %), BMI·PF<sub>6</sub> (0.2M), 60 °C, 45 min. <sup>*b*</sup> Determined by <sup>1</sup>H NMR spectroscopic analysis. <sup>*c*</sup> **10** (5 mol %), BMI·PF<sub>6</sub> (0.2 M), 60 °C, 4 h. <sup>*d*</sup> **10** (2.5 mol %), BMI·PF<sub>6</sub> (0.2M), 60 °C, 2 h.

#### Olefin Metathesis in the Ionic Liquid 1-Butyl-3-methylimidazolium Hexafluorophosphate Using a Recyclable Ru Catalyst: Remarkable Effect of a Designer Ionic Tag

Qingwei Yao\* and Yiliang Zhang

Department of Chemistry and Biochemistry, The Michael Faraday Laboratories Northern Illinois University, DeKalb, IL 60115-2862 (USA)



Angew. Chem. Int. Ed. 2003, 42, 3395-3398

# Table 1: Recycling and reuse of Ru catalysts 1 and 3 in the ring-closingmetathesis of diene 7.[a]

|                                                    | Ts<br>N ☆₃〜 –<br>7 | Ru Cataly<br>[Bmim]F<br>(1:9 v/v | vst (5 mol<br>PF <sub>6</sub> /CH <sub>2</sub> C<br>v, 0.05 M |          | rs<br>N<br>B     |         |
|----------------------------------------------------|--------------------|----------------------------------|---------------------------------------------------------------|----------|------------------|---------|
|                                                    | C                  | atalyst 1                        |                                                               | С        | atalyst <b>3</b> |         |
| Cycle                                              | 1                  | 2                                | 3                                                             | 1        | 2                | 3       |
| reaction time [h]<br>conversion [%] <sup>[b]</sup> | 3<br>> 98          | 3<br>54                          | 6<br>41                                                       | 3<br>>98 | 3<br>75          | 6<br>37 |





[a] All reactions were performed with 0.5 mmol of the substrate in the solvent system [Bmim]PF<sub>6</sub>/CH<sub>2</sub>Cl<sub>2</sub> (1:9 v/v, 10 mL) at 50 °C under an Ar atmosphere. [b] Determined by <sup>1</sup>H NMR spectroscopy at 500 MHz.



Scheme 1. Preparation of Ru carbene complex 6.



Table 2: Recycling and reuse of Ru catalyst 6 in the ring-closing metathesis of diene 7.<sup>[a]</sup>

|                               | <sup>Ts</sup><br><sup>N</sup> ↔s - |      |    | 6 (5 mol %)<br>[Bmim]PF <sub>6</sub> /CH <sub>2</sub> Cl <sub>2</sub><br>(1:9 v/v, 0.05 M) |      |    | ls<br>V |    |    |    |
|-------------------------------|------------------------------------|------|----|--------------------------------------------------------------------------------------------|------|----|---------|----|----|----|
|                               |                                    | 7    |    | 50°C                                                                                       | , 3h | ľ  | B       |    |    |    |
| Cycle                         | 1                                  | 2    | 3  | 4                                                                                          | 5    | 6  | 7       | 8  | 9  | 10 |
| conversion [%] <sup>[b]</sup> | >98                                | > 98 | 97 | 96                                                                                         | 95   | 94 | 92      | 92 | 91 | 90 |

[a] The reactions were performed with 0.5 mmol of the substrate in the solvent system [Bmim]PF<sub>6</sub>/  $CH_2Cl_2$  (1:9 v/v, 10 mL) at 50 °C under an Ar atmosphere. [b] Determined by <sup>1</sup>H NMR spectroscopy at 500 MHz .

| Entry                      | Substrate (con                                             | c)                           | Product                                               | Catalyst [mol%] | Conditions                           | Conversion [%] <sup>[b]</sup><br>(yield [%] <sup>[c]</sup> ) |
|----------------------------|------------------------------------------------------------|------------------------------|-------------------------------------------------------|-----------------|--------------------------------------|--------------------------------------------------------------|
| 1<br>2<br>3 <sup>[d]</sup> | N<br>N                                                     | (0.05м)<br>(0.05м)<br>(0.1м) | <sup>Ts</sup><br><sup>N</sup>                         | 5<br>5<br>2.5   | 50 °C, 3 h<br>50 °C, 3 h<br>RT, 12 h | 98 (95)<br>97 (94)<br>> 98 (96)                              |
| 4 <sup>[d]</sup>           | 14<br>OBz<br>16 <sup>[e]</sup>                             |                              | 15<br>OBz<br>17 <sup>(e)</sup>                        | 2.5             | 50°C, 4 h                            | 95 (89)                                                      |
| 1<br>2                     | Ph<br>O                                                    | (0.05м)<br>(0.05м)           | Ph                                                    | 5<br>5          | 50 °C, 3 h<br>50 °C, 3 h             | 98 (90)<br>96 (89)                                           |
| 3 <sup>[8]</sup>           | 18 <sup>(e)</sup><br>0 <sup>∞</sup> S<br>20 <sup>(f)</sup> | (0.02м)                      | 19 <sup>IFI</sup><br>O<br>S<br>Ph<br>21 <sup>II</sup> | 5               | 50°C, 6 h                            | 92(70)                                                       |
| 4                          | 0 <sup>₽h</sup><br>0 <sup>≈</sup> S<br>22 <sup>ℓ</sup>     | (0.05 м)                     |                                                       | 5               | 50°C, 6 h                            | 78(72)                                                       |
| 5                          | OBz<br>16 <sup>(e)</sup>                                   | (0.05 м)                     | OBz                                                   | 5               | 50°C, 4 h                            | 87(83)                                                       |

Ru-PCy1

NMe PF<sub>2</sub>

Table 3: Ring-closing metathesis catalyzed by Ru complex 6 in [Bmim]PF<sub>6</sub>/CH<sub>2</sub>Cl<sub>2</sub>.<sup>[a]</sup>

[a] Unless otherwise indicated, all reactions were performed under the following standard conditions: 0.5 mmol of substrate in the solvent system [Bmim]PF<sub>6</sub>/CH<sub>2</sub>Cl<sub>2</sub> (1:9 v/v, 10 mL) under an Ar atmosphere at the indicated temperature. [b] Determined by <sup>1</sup>H NMR spectroscopy at 500 MHz. [c] Yield of pure product after chromatography on silica gel. [d] Performed with 1.0 mmol of substrate. [e] Ref. [8]. [f] Ref. [17]. [g] Performed with 0.5 mmol of substrate in the solvent system [Bmim]PF<sub>6</sub>/CH<sub>2</sub>Cl<sub>2</sub> (1:24 v/v, 25 mL). Bz = benzyl.

## **Aziridination in Ionic Liquids**



Table 1. Formation of azridines 2a-h from imines 1a-h and EDA in room temperature ionic liquids<sup>a</sup>

| Entry   | Ionic liquid | Imine      | R <sup>1</sup>        | R <sup>2</sup>  | Product (yield%) <sup>b</sup>             |               |
|---------|--------------|------------|-----------------------|-----------------|-------------------------------------------|---------------|
| 1°      | bmimBF₄      | 1a         | Ph                    | Ph              | <b>2a</b> (82, <i>cis:trans</i> = 29.6:1) | <b>3a</b> (3) |
| 2°      | bmimPF6      | 1 <b>a</b> | Ph                    | Ph              | 2a (95, cis only)                         | 3a (2)        |
| 3       | bmimPF       | 1a         | Ph                    | Ph              | 2a (93, cis only)                         | 3a (3)        |
| $4^{d}$ | bmimPF       | 1 <b>a</b> | Ph                    | Ph              | 0                                         | 0             |
| 5°      | bmimPF       | 1a         | Ph                    | Ph              | 0                                         | 0             |
| 6       | bmimPF       | 1b         | p-Me-Ph               | Ph              | <b>2b</b> (83, <i>cis</i> only)           | 3b (8)        |
| 7       | bmimPF       | 1c         | p-Me-Ph               | <i>p</i> -Me-Ph | 2c (91, cis only)                         |               |
| 8       | bmimPF       | 1d         | o-MeO-Ph              | Ph              | 2d (85, cis only)                         |               |
| 9       | bmimPF       | 1e         | p-Cl-Ph               | Ph              | 2e (98, cis only)                         |               |
| 10      | bmimPF6      | 1f         | o-Cl-Ph               | Ph              | 2f (97, cis only)                         |               |
| 11      | bmimPF       | 12         | p-NO <sub>2</sub> -Ph | Ph              | 2g (98, cis:trans = 33.7:1)               |               |
| 12      | bmimPF       | 1h         | p-Br-Ph               | Ph              | 2h (98, cis only)                         |               |

<sup>a</sup> All reactions were carried out using 0.5 mmol of imine and 0.5 mmol of EDA in 1.5 ml of ionic liquid at room temperature for 5 h.

<sup>b</sup> Isolated yield, the ratio of *cis* and *trans* isomers was determined by GC-MS and <sup>1</sup>H NMR.

°1 mmol of imine and 0.5 mmol of EDA.

<sup>d</sup> 0.5 mmol of imine, 0.5 mmol of EDA and 0.1 mmol of bmimPF<sub>6</sub> in 3 ml of CH<sub>2</sub>Cl<sub>2</sub> at room temperature for 7 h.

° 0.5 mmol of imine, 0.5 mmol of EDA and 0.1 mmol of bmimPF<sub>6</sub> in 3 ml of hexane at room temperature for 7 h.

## W. Sun et al. / Tetrahedron Letters 44 (2003) 2409-2411



Table 2. Formation of azridines 2a from imine 1a and EDA in bmimPF<sub>6</sub> recycling<sup>a</sup>

| Entry | Recycle no. | Product (yiel            | ld%) <sup>▶</sup> |
|-------|-------------|--------------------------|-------------------|
| 1     | 1           | 2a (93, <i>cis</i> only) | <b>3a</b> (3)     |
| 2     | 2           | 2a (93, cis only)        | <b>3a</b> (3)     |
| 3     | 3           | 2a (93, cis only)        | <b>3a</b> (3)     |
| 4     | 4           | 2a (94, cis only)        | 3a (2)            |
| 5     | 5           | 2a (91, cis only)        | <b>3a</b> (4)     |

 $^{\rm a}$  0.5 mmol of imine and 0.5 mmol of EDA in 1.5 ml of bmimPF\_6 at room temperature for 5 h.

<sup>b</sup> Isolated yield, the ratio of *cis* and *trans* isomers was determined by GC–MS and <sup>1</sup>H NMR.