Asymmetric Schmidt Reaction of Hydroxyalkyl Azides with Ketones

J. Am. Chem. Soc. 2003, 125, 7914-7922

Kiran Sahasrabudhe, Vijaya Gracias, Kelly Furness, Brenton T. Smith, Christopher E. Katz, D. Srinivasa Reddy, and Jeffrey Aubé

Methods for Asymmetric Conversion of Ketones to Lactams

Photochemical rearrangement of chiral oxaziridines

Schmidt reaction using chiral alkyl azides

Aube, J.; Wang, Y.; Hammond, M.; Ranol, M.; Rakusagawa, F.; Vander, V, D. *J.Am. Chem. Soc.* **1990**, *112*, 4879-4891. Furness, K.; Aube, J. *Org. Lett.* **1999**, *1*, 495-497.

Oxaziridines	Asymetric Schmidt reaction
A chiral methylbenzylamine as a stereocontrolling group	Using a chiral alkyl azide
Three discrete steps and moderate overall yield (around 70%)	One-pot, one-workup procedure and higher overall yield (85%-100%)
Relatively low stereoselectivity (88:12 as the best result)	Considerably greater stereoselectivity (49:1 as the best result)

Solvent Selection

Table 1.	Reactions	of 1	with	4-Methy	/lcv	vclohexanone
----------	-----------	-------------	------	---------	------	--------------

entry	solvent	<i>T</i> (°C)	time (h)	yield (%) ^a	ratio of 14a: 14b ^b
1	THF	−78→ rt	36	0	_
2	Et_2O	0	21	3^c	73:27
3	cyclohexane	3	18	74	73:27
4	CH ₃ CN	-30	18	41	69:31
5	CH_2Cl_2	-30	18	15^{c}	83:17
6	CH_2Cl_2	-30	100	62	70:30
7	CH_2Cl_2	0	21	86	69:31
8	CCl_4	-20	18	97	78:22
9	<i>n</i> -pentane	-20	23	100	78:22

^a Isolated yields except where noted. ^b Ratios determined by HPLC of crude reaction mixtures. ^c Yield for this example estimated from HPLC trace.

Effects of Substituents on Ketones and 1,2-Hydroxyalkyl Azides

Table 2. Reactions of 1,2-Hydroxyethyl Azides with 4-substituted Ketones

entry	azide	ketone R	major product	yield (%) ^a	ratio a:b ^b
1	1	Me	14a	97	78:22
2	1	<i>t</i> -Bu	15a	83	85:15
3	2	Me	16a	51	87:13
4	2	<i>t</i> -Bu	17a	64	88:12
5	3 ^c	<i>t</i> -Bu	18a or 18b ^d	73	56:44

^a Isolated yield. ^b Ratio determined by HPLC trace of the crude reaction mixture.

^c This experiment was done using a racemic hydroxyalkyl azide. ^d Not assigned for this example.

Reactions of 1,3-Hydroxyalkyl Azides

Table 3. Reactions of Monosubstituted 1,3-Hydroxyalkyl Azides with 4-Substituted Cyclohexanones

			azide					
entry	ketone R	azide	R ₁	R_2	R_3	products	ratio a : b ^a	yield (%) ^b
1	Me	5	Н	Н	Ph	19	93:7	98
2	Ph	5	Н	Н	Ph	20	96:4	99
3	<i>t</i> -Bu	5	Н	Н	Ph	21	95:5	100
4	Me	6 ^c	Ph	Н	Н	22 ^c	89:11	96
5	<i>t</i> -Bu	6 ^c	Ph	Н	Н	23 ^c	90:10	94
6	<i>t</i> -Bu	7^d	$-C_6H(OMe)_3$	Н	Н	24^d	90:10 ^{d,e}	90
7	Me	8	Н	Me	Н	25	78:22	93
8	<i>t</i> -Bu	8	Н	Me	Н	26	74:26	98
9	Me	9 °	Н	Ph	Н	27 ^c	60:40	93
10	<i>t</i> -Bu	9 °	Н	Ph	Н	28 ^c	60:40	98
11	Me	10 ^d	Н	<i>i</i> -Pr	Н	29 ^d	88:12 ^d	88
12	<i>t</i> -Bu	10 ^d	Н	<i>i</i> -Pr	Н	30 ^d	88:12 ^d	85

^a Ratio determined by HPLC of crude reactionmixtures, except where noted. ^b Total yields of isolated purified lactams. ^c This reaction was done in the enantiomeric series to that shown in this table. ^d This experiment was done using a racemic hydroxyalkyl azide. ^e Ratio estimated by 1H NMR examination of the crude reaction mixture.

N-Dealkylation of the Lactams

Mechanistic Hypotheses

(a) Equatorial vs. axial addition

(b) Conformation of the new ring

VS.

equatorial substituent

axial substituent

(c) Relationship between leaving group and the migrating bond (the migrating bond is darkened)

Addition of Azides

Example with 1,2-azido alcohol

Confomation of the New Ring-A

Lower selectivity of the 2-substituted azidopropanols. (table 3)

Confomation of the New Ring- B

Table 3. Reactions of Monosubstituted 1,3-Hydroxyalkyl Azides with 4-Substituted Cyclohexanones

	azide							
entry	ketone R	azide	R ₁	R_2	R_3	products	ratio a : b ^a	yield (%) ^b
1	Me	5	Н	Н	Ph	19	93:7	98
2	Ph	5	Н	Н	Ph	20	96:4	99
3	<i>t</i> -Bu	5	Н	Н	Ph	21	95:5	100
4	Me	6 ^c	Ph	Н	Н	22 ^c	89:11	96
5	<i>t</i> -Bu	6 ^c	Ph	Н	Н	23 ^c	90:10	94
6	<i>t</i> -Bu	7^d	$-C_6H(OMe)_3$	Н	Н	24^d	90:10 ^{d,e}	90
7	Me	8	Н	Me	Н	25	78:22	93
8	<i>t</i> -Bu	8	Н	Me	Н	26	74:26	98
9	Me	9 c	Н	Ph	Н	27^{c}	60:40	93
10	<i>t</i> -Bu	9 °	Н	Ph	Н	28 ^c	60:40	98
11	Me	10 ^d	Н	<i>i</i> -Pr	Н	29 ^d	$88:12^{d}$	88
12	<i>t</i> -Bu	10 ^d	Н	<i>i</i> -Pr	Η	30 ^d	88:12 ^d	85

equatorial substituent

vs.

axial substituent

> Antiperiplanar rearrangements of leaving group relative to the migrating bond were supported by numerous literatures.

An asymmetric equivalent of the Schmidt reaction permits the stereocontrol in ring expansions of symmetrical cyclohexanones. Selectivities can be as high as ca. 98:2.

> 1,3-azido alcohols are generally more reactive and provide superior selectivities than 1,2-azido alcohols.

> Some initial suggestions were proposed as to how the selectivity obtained in the overall process might be achieved.