Aminohydroxylation of Olefins: Development and Applications

by

Manish Rawat Michigan State University Jan 17th, 2001

Outline

- 1. Aminohydroxylation of olefins
 - a. t-Butyl amine as N source
 - b. Chloramine-T as N source
 - c. N-Argentocarbamates as N source
- 2. Asymmetric aminohydroxylation (AA) of olefins
 - a. Chloramine-T/M as N source
 - b. N-Sodiocarbamates as N source
 - c. N-Chloro-N-sodio trimethylsilylethoxycarbamates as N source
 - d. N-Bromo-N-lithio carbamides as N source
- 3. Regioselectivity in AA reaction
- 4. AA on some useful substrates
- 5. Synthetic applications
- 6. Conclusion

Dihydroxylation of Olefins

Dihydroxylation of olefins

N analogue of transition metal oxo compound

Aminohydroxylation of olefins

1975 t-Butylamine as N Source for Aminohydroxylation

Sharpless, K. B.; Patrick, D. W.; Truesdale, L. K.; Biller, S. A. J. Am. Chem. Soc. 1975, 97, 2305-2307.

t-Butylamine as Nitrogen Source for Aminohydroxylation

Olefin	Amino alcohol	Solvent	% yield Amino alcohol	% yield Diol
1- Decene	/)NHtBu HO	CH ₂ Cl ₂ Pyridine	62 78	6 1
OMe	tBuHN OMe OH	CH ₂ Cl ₂ Pyridine	0 38	78 45
<i>E</i> -5- Decene	NHtBu	CH ₂ Cl ₂ Pyridine	> 20 > 95	50 (threo) < 3
Z-5- Decene	NHtBu	CH ₂ Cl ₂ Pyridine	0 25	53 42

• C - N bond is formed at the least substituted carbon

_

- Diol formation is more prominent in the sterically hindered system
- Pyridine increases aminoalcohol:diol ratio and rate of the reaction
- trans-Olefins give better results than cis olefins

Sharpless, K. B.; Patrick, D. W.; Truesdale, L. K.; Biller, S. A. J. Am. Chem. Soc. 1975, 97, 2305-2307.

Solvent Effect on Aminohydroxylation Reaction

• The rate of reaction and yield increase with the increase in coordination ability of the solvent.

Sharpless, K. B.; Patrick, D. W.; Truesdale, L. K.; Biller, S. A. J. Am. Chem. Soc. 1975, 97, 2305-2307.

Proposed Mechanism of Aminohydroxylation of Olefins

Two major limitations:

- Stoichiometric amount of Osmium reagent
- tert-butyl group is difficult to remove from the product

Catalytic dihydroxylation reaction

1976 Trihydrate of Chloramine-T as N Source

In some cases Cl⁻ inhibit the rate of reaction:

- AgNO₃ addition
- Phase transfer catalysis (1:1 benzene/H₂O + Et₃NBzCl)

cis Olefins give good yields along with trans olefins.

Sharpless, K. B.; Chong, A. O., Oshima, K. J. Org. Chem. 1976, 41, 177-179.

Proposed Mechanism of Catalytic Aminohydroxylation

- Benzyloxycarbonyl group is relatively easily removable protecting group
- cis Olefins give good yields along with trans olefins

Herranz, E.; Biller, S. A.; Sharpless, K. B. J. Org. Chem. 1978, 100, 3596-3598.

Effect of Excess Metallic Salt and Et₄NOAc in Aminohydroxylation of Olefins

 $\cap \square$

	3	BnOC(O)NC	CINa		
	3	OsO ₄ , CH ₃	CN	ŇHCbz	
	1			2	
	Reagent		Ratio	Rxn time (h)	Reactivity
В	nOC(O)NCINa + AgNO ₃		1.5 : 1.5	80	
В	nOC(O)NCINa + AgNO ₃		1.5 : 3.0	60	
В	nOC(O)NCINa + AgNO ₃	+ Et ₄ NOAc	1.5 : 1.5 : 1	18	INCREASE
В	nOC(O)NCINa + Hg(NO3	3)2	1.5 : 0.75	24	
В	nOC(O)NCINa +Hg(NO ₃)2	1.5 : 1.5	12	
В	nOC(O)NCINa +Hg(NO ₃) ₂ + Et ₄ NOAc	1.5 : 0.75 : 1	8	¥

Herranz, E.; Sharpless, K. B. J. Org. Chem. 1979, 45, 2710-2713.

Chiral Ligands for Asymmetric Aminohydroxylation (AA)

Hentges, S. G.; Sharpless, K. B. *J. Am. Chem. Soc.* **1980**, *102*, 4263-4265.

Li, G.; Chang, H.; Sharpless, K. B. *Angew. Chem. Int. Ed. Engl.* **1996**, *35*, 451-453.

Chloramine-T as N Source for AA

Li, G.; Chang, H.; Sharpless, K. B. Angew. Chem. Int. Ed. Engl. 1996, 35, 451-453.

Chloramine-M as N Source for AA

- All the hydroxysulfonamides obtained from Chloramine-M are crystalline solids
- Methanesulfonamide is soluble in water

Li, G.; Chang, H.; Sharpless, K. B. Angew. Chem. Int. Ed. Engl. 1996, 35, 2810-2812.

Chloramine-T/M as N Source for AA

			Z=p-to	ol-SO ₂ -	Z=Me-SO ₂ -	
S	Substrate	Product	%ee	Yield	%ee	Yield
Ph	CO ₂ Me	NHZ Ph OH	81	64% ^a	95	65% ^b
MeO ₂ C	CO₂Me	MHZ MeO ₂ C ÖH	77	65%	95	76%
Ph	Ph	NHZ Ph OH	62	52%	75	71%

a) Regioselectivity 5:1, b) Regioselectivity 9:1.

Li, G.; Chang, H.; Sharpless, K. B. Angew. Chem. Int. Ed. Engl. 1996, 35, 451-453 and 2810-2812.

N-Halo Carbamate as N Source for AA

- Benzyloxycarbonyl is a relatively easily removable protecting group.
- Styrene type olefins give good results along with other olefins..

Li, G.; Chang, H.; Sharpless, K. B. Angew. Chem. Int. Ed. Engl. 1996, 35, 2810-2812.

N Halocarbamate as N Source for AA

94

Bn

Li, G.; Chang, H.; Sharpless, K. B. Angew. Chem. Int. Ed. Engl. 1996, 35, 2810-2812.

N-Halo-t-butylcarbamate as N Source for AA

For t-Boc protected vicinal aminoalcohol formation:

- nPrOH/H₂O (2:1) ratio is lower than usual (1:1)
- Lower temperature (0°C)
- Ligand concentration is higher

K. L. Reddy, Sharpless, K. B. J. Am. Chem. Soc. 1998, 120, 1207-1217.

N-Chloro-N-Sodio-2-Trimethyl Silyl Carbamate (Teoc) as N Source

Trimethyl silyl carbamate is

- easily removable protecting group
- good regioselectivity, enantioselectivity
- styrene type olefins gives good yields

Reddy, K. L.; Dress, K. R.; Sharpless, K. B. Tetrahedron Lett. ,1998, 39, 3667-3670.

Primary Amides as N Source for AA of Olefin

Demko, P. Z.; Bartsch, M.; Sharpless, K. B. Org. Lett. 2000, 2, 2221-2223.

Steric, Electronic and Aromatic Substituent Effect on the Regioselectivity

R_1 R_2	(DHQ K ₂ Ost t-BuC	CNNaBr 2D)₂PHAL (5%) O₂(OH)₄ (4%) 0H/H₂O (2:3)) R ₁	Ac T ^R 2 + OH	B OH R ₁ NHA B	2 C
Entry	1	2	3	4	5	6
R ₁ =	Н	Et	Н	Ме	Н	Ме
R ₂ =	, r ^r	OSi t-Bu(Ph) ₂		`OEt	``````````````````````````````````````	OMe
A/B	>20:1	2:1	15.2:1	1.4:1	1.2:1	1:3.2

Han, H.; Cho, C.; Janda, K. D. Chem. Eur. J. 1999, 5, 1565-1569.

Steric and Aromatic Substituent Effect on the Regioselectivity

Entry	1	2	3	4
R ₁ =	TBDPS	t-butyl	TBDPS	TBDPS
R ₂ =	p-methoxy	/benzoyl	2-naphthoyl	(2-naphthyl)methyl
B/A	11.9:1	14.2:1	20:1	3:1

Han, H.; Cho, C.; Janda, K. D. Chem. Eur. J. 1999, 5, 1565-1569.

Steric, Electronic and Aromatic Substituent Effect on the Regioselectivity

Entry	1	2	3	4	5	6
R ₁ =	p-methoxy- benzoyl	benzyl	(2-naphthyl)- methyl	t-butyl	TBDPS	TBDPS
R ₂ =		ethyl		p-m ben	√∕ ethoxy- zyl	(2-naphthyl)- methyl
A/B	20:1.0	2.4:1.0	4.3:1.0	1.0:1.5	1.0:6.0	1.0:17.0

Han, H.; Cho, C.; Janda, K. D. Chem. Eur. J. 1999, 5, 1565-1569.

Reversal of Regioselection in the AA of Cinnamates by AQN and PHAL Ligands

Tao, B.; Schlingloff, G; Sharpless, K. B. Tetrahedron lett. 1998, 39, 2507-2510

(DHQ)₂AQN

(DHQ)₂PHAL

Reversal of Regioselection in the AA of Cinnamates of Aryl Ester Substrate

Entry	1	2	3	4	5	6	7	8	9
Ar: §—	R = H	Ме	OMe	Br	CI	F	CN	NO ₂	I
A/B	1:1	1:4	1:5	1:7	1:5	1:3	1:1.4	NR	NR
Yield %	51	53	55	60	58	59	50	-	-
ee %	10	16	30	87	89	96	3	-	-

Morgan, A. J.; Masse, C. E.; Panek, J. S. Org. Lett. 1999, 1, 1949-1952.

Hammet-type Analysis for the Aminohydroxylation Process

AA of Silyl Enol Ether

Phukhan, P.; Sudalai, A. Tetrahedron: Asymmetry 1998, 9, 1001-1005.

AA of Unsaturated Phosphonates

AA of Vinyl Furan

O'Doherty, G. A.; Bushey, M. L.; Haukaas, M. H. J. Org. Chem. 1999, 64, 2984-2985.

Use of AA in the Synthesis of di-O-TBDMS B[a]P DE-1 dA_c Diastereoisomers

B[a]P DE-1 diastereoisomers

Pilcher, A. S., Yagi, H.; Jerina, D. M. J. Am. Chem. Soc. 1998, 120, 3520-3521.

Conventional Method

Pilcher, A. S; Yagi, H.; Jerina, D. M. J. Am. Chem. Soc. 1998, 120, 3520-3521.

AA Approach towards di-O-TBDMS B[a]P DE-1 dA_c Diastereoisomers

Pilcher, A. S., Yagi, H.; Jerina, D. M. J. Am. Chem. Soc. 1998, 120, 3520-3521.

Use of AA in Synthesis of (+)-Lactacystin

- Isolated from a streptomyces bacterial strain in 1991
- Potent activities against arthritis, ischemia and asthma.

Panek, J. S.; Masse, C. E. Angew. Chem. Int. Ed. 1999, 38, 1093-1095.

Panek's Approach towards Oxazoline

Panek, J. S.; Masse, C. E. Angew. Chem. Int. Ed. 1999, 38, 1093-1095.

Use of AA in the Synthesis of Azepine Core of (-) Balanol

- Isolated from the fungus *Verticillium balanoides* in 1993.
- Potent inhibitor of human protein kinase C (PKC)

Panek, J. S.; Masse, C. E. Org. Lett. 2000, 2, 2571-2573.

Retrosynthetic Analysis of (-) Balanol HO HQ 0 CO₂H ℃H OH "'NH₂ Н 2 H Hexahydroazepine DН fragment (-)-Balanol (1) Cyclization Reduction OH H₂N ЮH Ar AA NH₂ (2S,3R)-Hydroxylysine Ar=p-bromophenyl

Panek, J. S.; Masse, C. E. Org. Lett. 2000, 2, 2571-2573.

Synthesis of Azepine Fragment of (-) Balanol

Panek, J. S.; Masse, C. E. Org. Lett. 2000, 2, 2571-2573.

Synthesis of Azepine Fragment of (-)-Balanol

Panek, J. S.; Masse, C. E. Org. Lett. 2000, 2, 2571-2573.

Use of AA in Synthesis of Cyclohexyl norstatin, a key Component of Tripeptide KRI 1314

- Isolated in 1988
- Potent renin inhibitor and hence potential agent of antihypertensive therapy

Upadjua, T. T.; Sudalai, A. Tetrahedron: Asymmetry 1997, 21, 3685-3689.

Synthesis of Cyclohexyl norstatin

Upadjua, T. T.; Sudalai, A. Tetrahedron: Asymmetry 1997, 21, 3685-3689.

Use of AA in the Synthesis of Taxol Side Chain

Bruncko, M.; Schingloff, G.; Sharpless, K. B. Angew. Chem. Int. Ed. Engl. 1997, 36, 1483-1486.

Use of AA in the Synthesis of Taxol Side Chain

Bruncko, M.; Schingloff, G.; Sharpless, K. B. Angew. Chem. Int. Ed. Engl. 1997, 36, 1483-1486.

Conclusions

- Using AA, alkenes can be converted to enantiomerically enriched N-protected amino alcohols.
- a, b-unsaturated esters, styrenes, vinylarenes and cyclohexenes are good substrates for AA.
- N sources with smaller substituent give higher yields and better enantioselectivity.
- Steric, electronic, and aromatic substituent effects can be used to influence the regiochemistry in AA.
- $(DHQ)_2PHAL$ and $(DHQ)_2AQN$ ligands give opposite regioselectivity.