Chemistry 881 Lecture Topics Fall 2001

Texts

PHYSICAL CHEMISTRY A Molecular Approach

McQuarrie and Simon

MATHEMATICS for PHYSICAL CHEMISTRY, Mortimer

i. Mathematics Review (M, Chapters 1,2,3 & 4; M&S, Chapters A & C)

Trigonometric Functions Elementary functions Series representations Complex numbers Derivatives of a single variable One dimensional Integrals Derivatives of functions with several variables

ii. Introduction to Mathematica

A. Historically Significant Experiments (M&S,Chapter 1)

Blackbody Radiation Photoelectric effect Compton effect DeBroglie Wavelength Atomic spectra are not continuous (line spectra) Heisenberg Uncertainty Principle

B. The Classical Wave Equation (M&S, Chapter 2)

The Wave Equation and its properties Separation of variables General solution Normal modes Linear differential equations with constant coefficients Two dimensional Wave Equation

C. Particle on a line/in a box (M&S, Chapter 3)

Model **Classical expectations** Time dependent Schrodinger equation Time independent Schrodinger equation Wavefunction Eigenvalue equation Hamiltonian operator Linear operator Solution to time independent Schrodinger equation **Boundary conditions** Stationary states Energy levels Quantum number **Wavefunctions Orthogonality** Normalization

Probability interpretation Correspondence principle Expectation values Uncertainty principle General time dependent solution

ii. Math Review (M, Section 5.7)

Multiple Integrals

D. Particle in a plane/particle in a two dimensional box (not in text)

Time independent Schrodinger equation Boundary conditions Separability Energy levels Degeneracy Wavefunctions Orthogonality Symmetry Probability interpretation General time dependent solution

E. Particle in a cube (M&S, Chapter 3)

Time independent Schrodinger equation Boundary conditions Separability Energy levels Degeneracy Wavefunctions Orthogonality Symmetry Probability interpretation General time dependent solution

F. Harmonic oscillator (M&S, Chapter 5)

Model

Classical expectations

Time dependent Schrodinger equation

Time independent Schrodinger equation

Eigenvalue equation

Hamiltonian operator

Linear operator

Solution to time independent Schrodinger equation

Boundary conditions

Stationary states

Energy levels

Quantum number

Wavefunctions

Orthogonality

Normalization

Probability interpretation

Correspondence principle

Expectation values

Uncertainty principle General time dependent solution Diatomic molecules and vibrational spectroscopy

G. Postulates & Principles of Quantum Mechanics (M&S, Chapter 4)

Postulate 1 Postulate 2 Postulate 3 Postulate 4 Postulate 5 Commuting operators

H. Rigid Rotor (M&S, Chapter 5)

Classical motion Spherical coordinates Moment of inertia Angular momentum Schrodinger equation Separation of variables Wavefunctions Spherical harmonics Energy levels Linear molecules Rotational spectroscopy

I. Hydrogen atom (M&S, Chapter 6)

Model Time independent Schrodinger equation Separation of variables Energy levels Degeneracy Wavefunctions Radial functions Angular functions s,p,d,f,g,...functions Probability density Radial distribution function Contour surfaces

iii. Mathematics review (M&S, Chapter E)

Determinants

J. Approximation methods (Chapter 7)

Variation method Trial function Boundary conditions Linear variation function Secular determinant Perturbation theory K. Multielectron atoms (M&S, Chapter 8)

Atomic units Hamiltonian Operator Variational calculations on He atom Electron spin Hartree-Fock equations Correlation energy Antisymmetry principle Slater determinants Term symbols Coupling of angular momenta Equivalent versus non-equivalent electrons Hund's rules

L. Chemical bond & diatomic molecules (M&S, Chapter 9)

Born-Oppenheimer approximation Schrodinger hamiltonian Linear combination of atomic orbitals for H_2^+ Binding energy of H_2^+ Electronic configuration of first row diatomics Photoelectron spectra Heteronuclear diatomics

M. Bonding in polyatomic molecules (M&S, Chapter 10)

sp, sp², sp³, Hybrid orbitals Photoelectron spectra

Huckel theory

N. Computational Quantum Chemistry (M&S, Chapter 11)

Basis sets Hartree-Fock wavefunctions The Gaussian program The Spartan program Role of Computational Chemistry

O. Molecular spectroscopy (M&S, Chapter 13)

Electromagnetic spectrum & molecular processes Diatomic molecules Rotation-vibration spectroscopy Rotational spectroscopy Anharmonicity in vibrational spectroscopy Excited electronic states Electronic spectra