Chemistry 881

Examination 3

October 22, 2001

Student Name_____

1. (10 points) Show that $Y_1^1(\theta, \phi)$ is an eigenfunction of \hat{L}^2

$$Y_1^1(\theta,\phi) = \left(\frac{3}{8\pi}\right)^{1/2} \sin\theta e^{i\phi}$$
$$\hat{L}^2 = -\hbar^2 \left[\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial}{\partial\theta}\right) + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial\phi^2}\right]$$

2. (20 points) Show that the hydrogenic atomic wave function ψ_{210} given below is normalized and that it is orthogonal to ψ_{200} .

$$\psi_{210} = \frac{1}{\sqrt{32\pi}} \left(\frac{1}{a_0} \right)^{3/2} \sigma e^{-\sigma/2} \cos(\theta)$$
$$\psi_{200} = \frac{1}{\sqrt{32\pi}} \left(\frac{1}{a_0} \right)^{3/2} (2 - \sigma) e^{-\sigma/2} \text{ where } \sigma = r/a_0$$
$$\text{Note:} \int_{0}^{\infty} x^n e^{-ax} dx = \frac{n!}{a^{n+1}}$$

3. (10 points) Show that the most probable value of r in a 1s state is a_0

$$\psi_{100} = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{3/2} e^{-\sigma}$$
 where $\sigma = r/a_0$

4. (10 points) Determine the degeneracy of each of the hydrogen atom energy levels.

Recall that
$$E_n = -\frac{Z^2 e^2}{8\pi \varepsilon_0 a_0 n^2}$$

5. (10 points) State the variation method.

6. (20 points) Given the trial function for the He atom as $\tilde{\psi}(1)\tilde{\psi}(2)$ where $\tilde{\psi}(i) = \sqrt{\frac{z^3}{\pi}}e^{-zr_i}$ where z is a variation parameter, one can show that $E(z) = z^2 - \frac{27}{8}z$. a. Determine E_{opt}

b. Interpret the meaning of z_{opt}

7. (20 points) Consider a linear variation function of the form

$$\tilde{\psi} = c_1 f_1 + c_2 f_2 + c_3 f_3$$

where $\langle f_i | f_j \rangle = S_{ij}$ and $\langle f_i | \hat{H} | f_j \rangle = H_{ij}$

Write out the secular determinant and describe how you would determine the coefficients c_i .