Student Name

Chemistry 881 October 3, 2001

Examination 2

1. (10 points) Solve the equation
$\frac{d^{2} x}{d t^{2}}+\omega^{2} x(t)=0$
Subject to the initial conditions $x(0)=A$ and $\frac{d x}{d t}=0$ at $t=0$
2. (20 points) In each case, show that $f(x)$ is an eigenfunction of the operator given. Find the eigenvalue.

$$
\hat{A}
$$

$$
f(x)
$$

(a) $\frac{d^{2}}{d x^{2}}$
$\cos \omega x$
(b) $\frac{d}{d t}$
$e^{i \omega t}$
(c) $\frac{d^{2}}{d x^{2}}+2 \frac{d}{d x}+3 \quad e^{\alpha x}$
(d) $\frac{\partial}{\partial y} \quad x^{2} e^{6 y}$
3. (20 points) Use the free electron model for the pi electrons in hexatriene and show that the first electronic transition is predicted to occur at $2.8 \times 10^{4} \mathrm{~cm}^{-1}$. The length of hexatriene can be estimated to be 867 pm .
4. (15 points) The force constant of ${ }^{79} \mathrm{Br}^{79} \mathrm{Br}$ is $240 \mathrm{Nm}-1$. Calculate the fundamental vibrational frequency and the zero point energy of ${ }^{79} \mathrm{Br}^{79} \mathrm{Br}$ in cm^{-1}.
5. (5 points)Show that the moment of inertia for a rigid rotator can be written as $I=\mu R^{2}$ where $R=R_{1}+R_{2}$ (the fixed separation between the two masses) and μ is the reduced mass.
6. (15 points) In the infrared spectrum of $\mathrm{H}^{79} \mathrm{Br}$, there is a series of lines separated by $16.72 \mathrm{~cm}^{-1}$. Calculate the values of the moment of inertia and the internuclear separtion in $\mathrm{H}^{79} \mathrm{Br}$.
7. (15 points) Evaluate the integral

$$
I=\int_{0}^{\pi} \cos ^{2} \theta \sin ^{3} \theta d \theta
$$

by letting $\quad x=\cos \theta$

