Student Number _____

Chemistry 881September 14, 2001Exam 1

- 1. (10 points) A certain population is growing exponentially, so that it doubles in size each 30 years.
 - a. If the population has a size of 4.00×10^6 individuals at t=0 write the formula giving the population after a number of years equal to t.
 - b. Find the population at t=150 years.

2. (6 points) Consider the following vectors: $\vec{A} = 2.5\hat{i} + 4\hat{j} \& \vec{B} = 3\hat{i} - 5\hat{j}$ a. Find $\vec{A} \bullet \vec{B}$ b. Find $|\vec{A}|$ and $|\vec{B}|$ and use them to find the angle between \vec{A} and \vec{B} 3. (10 points) Consider the vectors $\vec{A} = (1, 2, 3)$ and $\vec{B} = (1, 1, 1)$ a. Find the cross product $\vec{A}x\vec{B}$ b. Show that this cross product is perpendicular to \vec{A} and \vec{B} 4. (14 points) Express the following complex numbers in the form $re^{i\theta}$:

a. 4 + 4i b. -1 c. 1 d. 1-i

Express the following complex numbers in the form x + iy:

a. $e^{i\pi}$ b. $3e^{i\pi/2}$ c. $e^{i3\pi/2}$ 5. (6 points) Find the 3 cube roots of 3 - 2i

6. (24 points) Find the following derivatives. All letters stand for constants except for the dependent and independent variables indicated.

a.
$$\frac{dy}{dx}$$
, where $y = (ax^2 + bx + c)^{-3/2}$
b. $\frac{d\ln(P)}{dT}$, where $P = ke^{-Q/T}$
c. $\frac{dy}{dx}$, where $y = a\cos(bx^3)$
d. $\frac{d(yz)}{dx}$, where $y = ax^2$, $z = \sin(bx)$
e. $\frac{dP}{dV}$, where $P = nRT/(V - nb) - an^2/V^2$
f. $\frac{d\eta}{d\lambda}$, where $\eta = 2\pi hc^2/\lambda^5 (e^{hc/\lambda kt} - 1)$

7. (10 points) Find the indefinite integral

$$\int x \sin(x) dx$$

without using a table.

8. (10 points) The power output of a laser is measured in units of watts(W), where one watt is equal to one joule/sec. ($1 \text{ W} = 1 \text{ Js}^{-1}$). What is the number of photons emitted per second by a 1.00 mW nitrogen laser? The wavelength emitted by a nitrogen laser is 337 nm.

9. (10 points) Given that the work function of chromium is 4.40 eV, calculate the kinetic energy of electrons emitted from a chromium surface that is irradiated with ultraviolet radiation of wavelength 200 nm.