# Limiting reactants

How Many Cookies Can I Make?



- You can make cookies until you run out of one of the ingredients
- Once you run out of sugar, you will stop making cookies

# How Many Cookies Can I Make?



 In this example the sugar would be the limiting reactant, because it will limit the amount of cookies you can make

# Limiting Reactants

 The limiting reactant is the reactant present in the smallest stoichiometric amount



# Limiting Reactants

In the example below, the O<sub>2</sub> would be the

excess reagent



#### Limiting reagents

Reaction of nitrous oxide with oxygen to produce nitrogen dioxide

• 
$$2N_2O + 3O_2 \longrightarrow 4NO_2$$
  
• The mole ratio is 2 3 4  
•  $OR \quad 1 \quad 3/2 \quad 4/2$ 

• If three moles of  $N_2O$  are mixed with four moles of  $O_2$ , what is the maximum amount of  $NO_2$  that can be produced?

```
• 2N_2O + 3O_2 \longrightarrow 4NO_2

• 3 moles 4 moles ?? Moles

• If all N_2O used: 3 moles 3/2(3 \text{ moles})

• But, don't have 4.5 moles O_2 = 4.5 moles

• So: O_2 limiting: 2/3(4) 4 4/3(4)=16/3

• = 8/3
```

# Limiting reagents A quick way to tell:

Divide the number of moles you have of each reactant by the reaction coefficient for that reactant:

• 
$$2N_2O$$
 +  $3O_2$   $\longrightarrow$   $4NO_2$ 
•  $3 \text{ moles}$   $4 \text{ moles}$  ???
•  $3/2=1.5$   $4/3=1.33$ 

So O<sub>2</sub> limiting because 1.33<1.5</li>

#### Limiting reagent examples

 Suppose 6.54 g of zinc is treated with 5.47 g of hydrochloric acid (in solution). What is the maximum amount of H<sub>2</sub> gas that can be produced and what quantity of the nonlimiting reactant remains at the end?

```
• Equation: Zn(s) + 2HCl(aq) \longrightarrow ZnCl_2(aq) + H_2

• 6.54 g 5.47 g

• Moles: 6.54/65.4 5.47/36.5

• =0.1 =0.15

If Zn: 0.1 2(0.1=.2)

So HCl: 0.15/2=.075 0.15 0.15/2=.75 0.15/2=0.075
```

Hydrazine  $N_2H_4$  reacts with dinitrogen tetroxide  $N_2O_4$  by this equation:  $2 N_2H_4 + N_2O_4 \rightarrow 3 N_2 + 4 H_2O$ When 3 mol  $N_2H_4$  reacts with 2 mol  $N_2O_4$ , how many moles of  $N_2$  are produced?

$$2N_2H_4 + N_2O_4 \rightarrow 3N_2 + 4H_2O$$
  
3 mole 2 mole ??  
If  $N_2H_4$ : 3  $3/2=1.5$   $3(3/2)=9/2$ 

#### Percent yield:

- The world is not perfect. When a reaction happens not all of the reactants get turned perfectly into products. You always lose some
- %yield = actual amount/theorectical amount
- Actual: what you actually got
- Theorectical: What you calculated you were going to get.

#### Percent yield example:

```
6UO_3 + 8BrF_3 \rightarrow 6UF_4 + 4Br_2 + 9O_2

286 \text{ g mol}^{-1} 137 \text{ g mol}^{-1} 314 \text{ g mol}^{-1}

357 \text{ g}

1.25 \text{ mol}

2.61 \text{ mol}

1.25(8/6)=1.67

1.25(6/6)=1.25=392.5g

380g/392.5gx100=96.8\%
```

If 380 g of  $UF_4$  was produced, what's the %yield?

# Chapter 4 Aqueous Reactions and Solution Stoichiometry

#### Solutions:



- Homogeneous mixtures of two or more pure substances.
- The solvent is usually present in greatest abundance.
- Or, the solvent is the liquid when a solid is dissolved
- All other substances are solutes.

#### Dissociation



 ionic compound dissolves in water, the individual ions from the crystal are separated. This process is called dissociation.



- Substances that dissociate into ions when dissolved in water are electrolytes.
- A nonelectrolyte may dissolve in water, but it does not dissociate into ions when it does so.

#### Electrolytes and Nonelectrolytes



Soluble ionic compounds tend to be electrolytes.

## Electrolytes and Nonelectrolytes



Molecular compounds tend to be nonelectrolytes, except for acids and bases.

### Electrolytes

- A strong electrolyte dissociates completely when dissolved in water.
- A weak electrolyte only dissociates partially when dissolved in water.
- A nonelectrolyte does not dissociate in water

|                    | <b>Strong Electrolyte</b>           | Weak Electrolyte                                         | Nonelectrolyte           |
|--------------------|-------------------------------------|----------------------------------------------------------|--------------------------|
| Ionic<br>Molecular | All<br>Strong acids (see Table 4.2) | None<br>Weak acids (H )<br>Weak bases (NH <sub>3</sub> ) | None All other compounds |

#### Acids, definition

- Acid: Increases H<sup>+</sup> concentration in solution
- HCl  $\rightarrow$  H<sup>+</sup> + Cl<sup>-</sup>

- Base: Increases OH<sup>-</sup> concentration in solution
- NaOH  $\rightarrow$  Na<sup>+</sup> + OH<sup>-</sup>

### Strong Electrolytes Are...

Strong acids, dissociate completely in solution

| Strong Acids                                                                                                                                          | Strong Bases                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Hydrochloric, HCl                                                                                                                                     | Group 1A metal hydroxides (LiOH, NaOH, KOH, RbOH, CsOH)                                            |
| Hydrobromic, HBr                                                                                                                                      | Heavy group 2A metal hydroxides [Ca(OH) <sub>2</sub> , Sr(OH) <sub>2</sub> , Ba(OH) <sub>2</sub> ] |
| Hydroiodic, HI<br>Chloric, HClO <sub>3</sub><br>Perchloric, HClO <sub>4</sub><br>Nitric, HNO <sub>3</sub><br>Sulfuric, H <sub>2</sub> SO <sub>4</sub> |                                                                                                    |

The 7 common strong acids

**KNOW THEM** 

# Strong Electrolytes Are...

- Strong acids
- Strong bases

#### NOTE THIS IS MORE STUFF YOU NEED TO KNOW

| Strong Acids                                                         | Strong Bases                                                     |
|----------------------------------------------------------------------|------------------------------------------------------------------|
| Hydrochloric, HCl                                                    | Group 1A metal hydroxides (LiOH, NaOH, KOH, RbOH, CsOH)          |
| Hydrobromic, HBr                                                     | Heavy group 2A metal hydroxides $[Ca(OH)_2, Sr(OH)_2, Ba(OH)_2]$ |
| Hydroiodic, HI                                                       |                                                                  |
| Chloric, HClO <sub>3</sub><br>Perchloric, HClO <sub>4</sub>          | The strong bases                                                 |
| Nitric, HNO <sub>3</sub><br>Sulfuric, H <sub>2</sub> SO <sub>4</sub> | KNOW THEM!!!!                                                    |

#### Weak acids and bases

- Acids or bases that do not dissociate completely.
- $HCH_3CO_2 \rightarrow H^+ + CH_3CO_2^-$
- Mostly stays acetic acid.

#### Weak base:

NH<sub>3</sub> ammonia.

 $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$ 

The only one you know.

# Strong Electrolytes Are...

- Strong acids
- Strong bases
- Soluble ionic salts
- If the salt doesn't dissolve, it can't conduct.
- For example:
- NaCl
- KNO<sub>3</sub>
- $Mg(NO_3)_2$
- LiClO<sub>4</sub>
- Etc. Any ionic compound

#### Exam 1 rooms

• Exam time: Monday sept 24, 7:15-8:15 pm

Sect 57-63: 1281 Anthony hall

• 64-67 402 computer center

68-70 1279 Anthony Hall

 Alternate exam: Monday 9/24 6:45 am-7:45 am 138 chemistry

#### Naming acids and their anions

- HCl is a gas, but in water (aqueous solution), it is hydrochloric acid, HCl(aq)
- HNO<sub>3</sub> is nitric acid (from the nitrate anion)
- HNO<sub>2</sub> is nitrous acid (from the nitrite anion)
- HClO is hypochlorous acid (from hypochlorite
- Other examples:
- H<sub>2</sub>SO<sub>4</sub>
- HCN
- HBrO<sub>2</sub>
- CH<sub>3</sub>CO<sub>2</sub>H

#### Types of reactions and their equations

#### Acid-base

- HCl + NaOH  $\rightarrow$  NaCl + H<sub>2</sub>O
- But ions dissociate; to show that:
- $H^+ + Cl^- + Na^+ + OH^- \rightarrow Na^+ + Cl^- + H_2O$
- Called a detailed ionic equation. Now cross out everything that is the same on both sides:
- $H^+ + Kl^- + Na^+ + OH^- \rightarrow Na^+ + Kl^- + H_2O$
- Gives:
- $H^+ + OH^- \rightarrow H_2O$  A net ionic equation.

### Types of reactions and their equations

Precipitation, the formation of a product that is insoluble:

$$AgNO_3 + NaCl \rightarrow AgCl(s) + NaNO_3$$
  
 $Ag^+ + NQ_3^- + NQ_3^+ + Cl^- \rightarrow AgCl(s) + NQ_3^- + NQ_3^+$   
 $Ag^+ + Cl^- \rightarrow AgCl(s)$ 

AgCl (silver chloride) is insoluble and precipitates as a solid out of the solution. So write as formula, not ionized.

#### Types of reactions and their equations

Gas forming, the formation of a product that is a gas:

$$NiCO_{3(s)} + 2HCI \rightarrow NiCI_2 + H_2O + CO_{2(g)}$$
  
 $NiCO_{3(s)} + 2H^+ + 2CJ^{2-} \rightarrow Ni^{2+} + 2CJ^{2-} + H_2O + CO_{2(g)}$   
 $NiCO_{3(s)} + 2H^+ \rightarrow Ni^{2+} H_2O + CO_{2(g)}$ 

The carbon dioxide (CO<sub>2</sub>) gas is mostly insoluble and bubbles out of solution.

#### Oxidation-Reduction Reactions

- An oxidation occurs when an atom or ion loses electrons.
- A reduction occurs
   when an atom or ion
   gains electrons.



#### Oxidation-Reduction Reactions



One cannot occur without the other.

Substance oxidized (loses electron)

Substance reduced (gains electron)

To determine if an oxidation-reduction reaction has occurred, we assign an oxidation number to each element in a neutral compound or charged entity.

Book-keeping for electrons

#### Assigning Oxidation Numbers

- Elements in their elemental form have an oxidation number of 0.
- The oxidation number of a monatomic ion is the same as its charge.

Na oxidation number 0 Na<sup>+</sup> oxidation number +1

#### **Assigning Oxidation Numbers**

- Nonmetals tend to have negative oxidation numbers, although some are positive in certain compounds or ions (when they are bound to other nonmetals).
  - ➤ Oxygen has an oxidation number of -2, except in the peroxide ion  $(O_2^{2-})$  in which it has an oxidation number of -1.
    - > CO<sub>2</sub>, H<sub>2</sub>O, CaO etc. O has -2 oxidation number
  - ➤ Hydrogen is -1 when bonded to a metal, +1 when bonded to a nonmetal.
    - ➤ NaH H has -1 oxidation number
    - ➤ HCl H has +1 oxidation number
    - ➤ CH<sub>4</sub> H has +1 oxidation number

Group 1A elements always oxidation number +1, group IIA always have +2 oxidation number.

- Nonmetals tend to have negative oxidation numbers, although some are positive in certain compounds or ions.
  - ➤ Fluorine always has an oxidation number of -1.
  - > The other halogens have an oxidation number of
    - -1 when the oxidation number is negative;
  - ➤ they can have positive oxidation numbers, however, most notably in oxyanions.
    - ➤ CCI<sub>4</sub>, HCI, CI o.n. -1
    - ➤ ClO<sub>4</sub>- Cl o.n. +7 (must be because O is always negative)
    - > HCOCI Clo.n. -1

- The sum of the oxidation numbers in a neutral compound is 0.
- The sum of the oxidation numbers in a polyatomic ion is the charge on the ion.

```
CCI_4 CI o.n. -1 -1(4) = -4. C o.n. +4
```

$$CIO_4^- O: -2(4) = -8 CI: +7 (7-8=-1)$$

| CIO <sub>2</sub> -             | $Mg_3P_2$         | SO <sub>4</sub> <sup>2-</sup> | $MnO_4$           | $BrF_3$ |
|--------------------------------|-------------------|-------------------------------|-------------------|---------|
| CaH <sub>2</sub>               | XeOF <sub>4</sub> |                               |                   |         |
| CO <sub>3</sub> <sup>2-</sup>  | NO <sub>3</sub> - | FeCl <sub>3</sub>             | SF <sub>6</sub>   | $H_2S$  |
| H <sub>2</sub> SO <sub>4</sub> | CaH <sub>2</sub>  | $BBr_3$                       | SO <sub>3</sub> - | CIO-    |

#### Oxidation reduction reactions

**Oxidation** is when an element loses electrons

results in increase in oxidation number

**Reduction** is when an element gains electrons

results in a decrease in oxidation number

- A redox reaction is when elements gain or lose electrons during the process.
- Oxidation is always exactly balanced by reduction. The number of electrons lost in oxidation must equal the number of electrons gained in reduction
- Example:

$$2Mg + CO_2 \rightarrow 2MgO + C$$

Which element is reduced? This is called the oxidizing agent. Which element is oxidized? This is called the reducing agent.

#### Solution stoichiometry

Reactions that happen in solution

Depend on Concentration:

moles reactant/volume of solution

- $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$
- 1 mole 2 moles 1 mole 2 moles
- Volume matters. Depends on moles/L Molarity M

### Solution Stoichiometry

- Two important relationships:
- Mass/molar mass = # moles

- # moles = molarity \* volume
- Allows you to measure out a volume and know the # of moles
- Also: mmol = mol/L\*mL

#### **Examples:**

- Dissolve 50. g sulfuric acid in enough water to make 250 mL solution. What is the molarity?
- $50 \text{ g/98 gmol}^{-1} = 0.51 .51 \text{ mole/} 0.25 \text{ L= } 2.0 \text{ M}$

 What mass of NaOH is required to make 15 L of a 0.2 M solution.

- 0.2 mole/L(15 L) = 3 moles
- 3 moles\* $(40 \text{ gmol}^{-1}) = 120 \text{ g}.$

#### Examples

- How many mL of a 6.0 M solution of HCl solution need to be added to water to make 1.0 L of a 0.15 M HCl solution?
- #molesNeeded: 1.0 L(0.15molL<sup>-1</sup>) = 0.15 mol
- Volume 6M HCl solution = 0.15 mol/(6.0 molL<sup>-1</sup>) = 0.025 L

#### Lecture 10, Redox reactions

- All chemical reactions can be divided into 2 categories:
  - Acid-base, "oxidation numbers" stay same
  - Redox, "oxidation numbers" change.

But what are oxidation numbers?

A convention for keeping track of electrons during a chemical reaction. Example:

Na + 
$$H_2O$$
  $\rightarrow$  Na<sup>+</sup> +  $OH^-$  +  $1/2H_2$   
0 +1 -2 +1 -2 +1 0