> Lecture 36
> Aqueous Equilíbría

This is all about: reactions/equilibria in water.

Water is special. why?
Large dipole moment
Very good hydrogen bonding
Very strong intermolecular interactions with itself
So what?
Large dipole moment, allows it to dissolve ions
Hydrogen bonding allows it to dissolve $\mathrm{H}-$ bonding species (alcohols, acetic acid, etc.).
Unique solvent

Secture 36 Aqueous Equilíbría

Remember:
2 kinds of species:
Electrolyte (makes ions)
strong
totally dissociated into ions
weak
very little dissociation into ions

Nonelectrolyte
No ionization at all.

Strong electrolytes

How do you know if it is a strong electrolyte?
It has to be one of these:
A salt (that dissolves)
Examples: $\mathrm{NaCl}, \mathrm{MgBr}_{2}, \mathrm{Na}_{2} \mathrm{SO}_{4}$
The strong acids:
$\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI} \mathrm{HClO} 4, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$
Strong base:
Group 1 or II hydroxide salts:
Examples: $\mathrm{NaOH}, \mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{LiOH} . .$.
Nonelectrolyte
No ionization at all.

Strong electrolytes

An aside:
Debye Huckel:
Complete ionization is an approximation There are always some non-ionized Example: $\mathrm{l}<2$ for NaCl (only slightly)

Weak electrolytes

What is a weak electrolyte?
Weak acid (every acid that's not a strong acid)
Examples: $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{HNO}_{2}, \mathrm{HF}, \mathrm{HCN}$ $\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}^{-}$

Weak bases (every other base)
Example: NH_{3}
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
system lies very far toward reactants
K (equilibrium constant very small 4×10^{-10})
concentrations of products very small.

Weak electrolytes ionic equations

Since weak electrolytes don't completely dissociate: In an ionic equation, write them as not dissociated:

$$
\begin{aligned}
\mathrm{HCN}+\mathrm{NaOH} & \rightleftharpoons \mathrm{NaCN}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{HCN}+\mathrm{Na}^{+}+\mathrm{OH}^{-} & \rightleftharpoons \mathrm{Na}^{+}+\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{HCN}+\mathrm{OH}^{-} & \rightleftharpoons \mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

$\mathrm{HCl}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4} \mathrm{Cl}$
$\mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$ $\mathrm{H}^{+}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4}^{+}$

Definition of an acid:

Previously: defined an acid as increasing H^{+} Actually 3 ways to define acid/base: Arrhenius (specific to water) Bronsted Lowry (most useful and clear) Lewis (most general definition)

1. Arrenius (aqueous only)
2. Acid: increases the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$(concentration)
3. Base: increases the $\left[\mathrm{OH}^{-}\right]$(concentration)
4. Example: HCl

$$
\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}
$$

Neutralization: $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$

Definition of an acid:

2. Bronsted Lowry (most useful)
3. Acid: A substance that donates an H^{+}
4. Base: A substance that accepts an bH^{+}
5. Example;

2 conjugate acid/base pairs Acid/base pair, differs by $1 \mathrm{H}^{+}$ Equilibrium always lies on the weaker side.

Definition of an acid:

2. Bronsted Lowry (most useful)
3. Another example;

The equation represents the hydrolysis of the acetate ion in aqueous solution to produce a basic solution.
What is hydrolysis (hydro water, lysis cut)

Definition of an acid:

3. Lewis (most general, does not even need H^{+})

Acid: a substance that accepts and electron pair
Base: a substance that donates an electron pair

The reaction between an acid and a base is the donation of a pair of electrons from the base to the acid and the formation of a coordinate bond.
$\mathrm{H}^{+} \longleftarrow: \mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}$
$\mathrm{F}_{3} \mathrm{~B} \longleftarrow: \mathrm{NH}_{3} \longrightarrow \mathrm{~F}_{3} \mathrm{~B}-\mathrm{NH}_{3}$

Lecture 37: Brondsted-Lowry acidbase equlíbríum

To reiterate: Must recognize: strong acid, strong base, weak acid, weak base and a salt.

Examples:
HNO_{3}

$$
\begin{aligned}
& \mathrm{HF} \\
& \mathrm{H}_{3} \mathrm{PO}_{4}
\end{aligned}
$$

Lecture 37: Brondsted-Lowry acidbase equlíbríum

To reiterate: Must recognize: strong acid, strong base, weak acid, weak base and a salt.

Examples:
HNO_{3} acid, strong
KOH base, strong
KCN
NaHCO_{3}
CaSO_{3}
NH_{3}
base, weak
base, weak
base, weak
base, weak
$\mathrm{NH}_{4} \mathrm{ClO}_{4}$ acid, weak
KClO base, weak
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ acid, weak HF
$\mathrm{H}_{3} \mathrm{PO}_{4}$ acid, weak
$\mathrm{NH}_{4} \mathrm{~F}$ acid, weak

Lecture 37: Brondsted-Lowry acidbase equlíbrium
In every Bronsted-Lowry equilibrium:
each acid has a conjugate base
each base has a conjugate acid.
difference between acid \& conjugate base is one H^{+}.
More Examples:

Acid	Base
$\mathrm{H}_{2} \mathrm{SO}_{3}$	$\mathrm{HSO}_{3}{ }^{-}$
HCN	CN^{-}
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	$\mathrm{HPO}_{4}{ }^{2-}$
$\mathrm{H}_{2} \mathrm{CO}_{3}$	HCO_{3}^{-}
HCO_{3}^{-}	$\mathrm{CO}_{3}{ }^{--}$

B.- L. acíd-base equlibríum

It is instructive to list acids \& bases in order of strength

Acid
HClO_{4}
HNO_{3}
$\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{H}_{3} \mathrm{PO}_{4}$
$\mathrm{H}_{2} \mathrm{SO}_{3}$
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
$\mathrm{H}_{2} \mathrm{CO}_{3}$
NH_{4}^{+}
$\mathrm{H}_{2} \mathrm{O}$
NH_{3}

Base
ClO_{4}^{-}
$\mathrm{NO}_{3}{ }^{-}$
$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
$\mathrm{HSO}_{3}{ }^{-}$
$\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$
$\mathrm{HCO}_{3}{ }^{-}$
NH_{3}
OH^{-}
$\mathrm{NH}_{2}{ }^{-}$
$\mathrm{H}_{3} \mathrm{O}^{+}$, strngest acid in $\mathrm{H}_{2} \mathrm{O}$
OH^{-}strongest base in $\mathrm{H}_{2} \mathrm{O}$
B.-L. acid-base equlíbrium

Any acid stronger than water:
$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}^{-}$
$\mathrm{HClO}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{ClO}_{4}^{-}$
both strong
acids

Base stronger than OH^{-}
$\mathrm{NH}_{2}{ }^{-}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{OH}^{-}+\mathrm{NH}_{3}$
Any acid/base stronger just gets completely converted into $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}.
Strong acid: any acid stronger than $\mathrm{H}_{3} \mathrm{O}^{+}$
Weak acid: any acid weaker than $\mathrm{H}_{3} \mathrm{O}^{+}$

\mathcal{H} ydrogen ion concentration \& $p \mathcal{H}$

[$\mathrm{H}_{3} \mathrm{O}^{+}$] 1M-----------------10-7 $\mathrm{M}------------------10^{-14} \mathrm{M}$
strong neutral acid
pH

acidic
neutral
strongly base
$=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

Use a log scale because we have very small numbers $\left(10^{-7} 10^{-14}\right.$ to $\left.10^{-1}\right) \mathrm{pH} 1$ is very acidic.

\mathcal{H} ydrogen ion concentration \& $p \mathcal{H}$

Autoionization of water:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}^{-}+\mathrm{H}_{3} \mathrm{O} \\
& K=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}
\end{aligned}
$$

[$\mathrm{H}_{2} \mathrm{O}$] = constant (water concentration much higher than anything else)
$K_{W}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}$
$p K_{W}=14$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{M}$
$p H+p O H=p K_{W}=14$

\mathcal{H} ydrogen ion concentration \& $p \mathcal{H}$

 Autoionization of water:
[$\mathrm{H}_{2} \mathrm{O}$] = constant (water concentration much higher than anything else)
$K_{W}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}$
$p K_{W}=14$
$p H+p O H=p K_{W}=14$
What is the definition of a neutral solution? $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{M}$
$p H=p O H=7$

Salts and water

We've already covered some of this stuff before: but most students find it annoying and complex so we will talk about it some more.

What happens when a salt dissolves in water?
What is a salt?
An ionic compound
Does not have H^{+}as cation or OH^{-}as base.

Salts and water

What happens when a salt dissolves in water?

1. Dissociation (cation swims away from anion)
2. Solvation (both ions surrounded by water)
3. possibly hydrolysis.

Salts dissolve with almost complete dissociation The ions are then "solvated", surrounded by water. With water pointing its dipole moment at the ion to stabilize it. All this happens to all salts.

Salts and water

What happens when a salt dissolves in water?

1. Dissociation (cation swims away from anion)
2. Solvation (both ions surrounded by water)
3. possibly hydrolysis.

What about 3 (hydrolysis)?
Happens when one of the ions is a weak acid or base?
$\mathrm{KF} \longrightarrow \mathrm{K}^{+}+\mathrm{F}^{-} \longrightarrow \mathrm{K}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}+\mathrm{F}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$

What can happen next?

Salts and water

$\mathrm{KF} \longrightarrow \mathrm{K}^{+}+\mathrm{F}^{-} \longrightarrow \mathrm{K}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}+\mathrm{F}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$

What can happen next? 2 possible reactions with water:

$$
\begin{aligned}
& \mathrm{K}^{+}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{~F}^{-}+\mathrm{H}_{2} \mathrm{O}
\end{aligned} \stackrel{\mathrm{KOH}+\mathrm{H}^{+}}{ }
$$

Which if either happens?

Happens when one of the ions is a weak acid or base?
$\mathrm{KF} \longrightarrow \mathrm{K}^{+}+\mathrm{F}^{-} \longrightarrow \mathrm{K}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}+\mathrm{F}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$

What can happen next? 2 possible reactions with water:

$$
\begin{aligned}
\mathrm{K}^{+}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{KOH}+\mathrm{H}^{+} \\
\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{HF}+\mathrm{OH}^{-}
\end{aligned}
$$

This one happens. Why?
Because HF is a weak acid. Therefore equil. Is toward HF

This one happens why?

$$
K_{b}=\frac{[H F]\left[\mathrm{OH}^{-}\right]}{\left[F^{-}\right]}
$$

$\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HF}+\mathrm{OH}^{-}$
Base(w) acid(w) acid(w) base(s)

$$
\begin{aligned}
\mathrm{F}^{-}+ & \mathrm{H}_{2} \mathrm{O} \\
\text { Base }(\mathrm{w}) & \rightleftharpoons \operatorname{acid}(\mathrm{w})
\end{aligned} \begin{array}{ll}
\mathrm{HF}+ & \mathrm{OH}^{-} \\
\text {acid(w) } & \text { base(s) }
\end{array}
$$

Compare to ionization of weak acid:

$$
K_{b}=\frac{[H F]\left[O H^{-}\right]}{\left[F^{-}\right]}
$$

$\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{F}^{-}+\mathrm{OH}^{-}$

$$
K_{a}=\frac{\left[F^{-}\right]\left[H_{3} O^{+}\right]}{[H F]}
$$

When you multiply these 2 together, something cool:
$K_{a} K_{b}=\frac{\left[F^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[H F]} \frac{[H F]\left[\mathrm{OH}^{-}\right]}{\left[F^{-}\right]}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=K_{W}$
$K_{a} K_{b}=K_{W}$
The stronger the acid, the weaker the conjugate base. K_{a} big, K_{b} small.

Examples:

1. What happens when sodium acetate dissolves in water?
2. What happens when ammonium nitrate dissolves in water?

Examples:

1. What happens when sodium acetate dissolves in water?
$\mathrm{NaCH}_{3} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$
$\mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{OH}^{-}$
A weakly basic solution is the result.
2. What happens when ammonium nitrate dissolves in water?
$\mathrm{NH}_{4}{ }^{+}+\mathrm{NO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{NO}_{3}{ }^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
The result is a weakly acidic solution.

Trevious examples:

Recognition of salts:

Examples:
KOH base, strong
KClO salt, base, weak HNO_{3} acid, strong KCN salt, base, weak $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ acid, weak NaHCO_{3} salt, base, weak HF acid, weak CaSO_{3} salt, base, weak $\mathrm{H}_{3} \mathrm{PO}_{4}$ acid, weak $\mathrm{NH}_{4} \mathrm{ClO}_{4}$ salt, acid, weak
$\mathrm{NH}_{4} \mathrm{~F}$ salt, acid, weak NH_{3} base, weak

Trevious examples:

In general:

Acid	base	example	solution
Strong	strong	NaCl	neutral
Strong	weak	HCl	acidic
weak	strong	NaCN	basic
Weak	weak	$\mathrm{NH}_{4} \mathrm{CN}$	depends?

Salts of polyprotic acids

Examples:
$\mathrm{NaHSO}_{4} \quad \mathrm{HSO}_{4}^{-} \quad$ still acidic (strong acid)
$\mathrm{NaHCO}_{3} \quad \mathrm{HCO}_{3}{ }^{2-}$ hydrolyzes so basic (weak acid)
$\mathrm{H}_{2} \mathrm{CO}_{3} \longleftarrow \mathrm{HCO}_{3}^{-} \longrightarrow \mathrm{CO}_{3}{ }^{2-}$
$\mathrm{K}_{\mathrm{a}}=4.5 \times 10^{-7} \quad 4.8 \times 10^{-11}$

Can act as an acid or base, amphoteric.
A competition for H^{+}, who wins, who loses?
Depends on the equilibrium constant.

Salts of polyprotic acids

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \underset{\mathrm{~K}_{\mathrm{a}}=4.5 \times 10^{-7}}{\leftarrow} \mathrm{HCO}_{3}^{-} \xrightarrow[\mathrm{K}_{\mathrm{a}}=4.8 \times 10^{-11}]{\mathrm{CO}_{3}^{2-}}
$$

Hydrolysis:
$\mathrm{HCO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{h}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}=10^{-7}$ Ionization:
$\mathrm{HCO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{K}_{\mathrm{a}}=4.8 \times 10^{-11}$
$\mathrm{K}_{\mathrm{h}}>\mathrm{K}_{\mathrm{a}}$ so HCO_{3}^{-}prefers to hydrolyze to give basic solution.

Other amphoteric species

HSO_{4}^{-}
 $\mathrm{HPO}_{4}{ }^{2-}$
 $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
 $\mathrm{H}_{2} \mathrm{PO}_{3}{ }^{-}$

In short, the single anion of a polyprotic acid.
It can go either way, get reprotonated or get deprotonated again.

