\mathcal{F} irst $\mathfrak{L a w}$ of Thermodynamics

- Remember: $\Delta \mathrm{E}_{\text {univ }}=0$
- Total energy of the universe is constant.
- Energy can be transferred:
- $\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}$
- q = heat
- $\mathrm{w}=$ work $\left(\mathrm{F}^{*} \mathrm{D}\right)=\Delta \mathrm{PV}$

1 ${ }^{\text {st }}$ Law, revíew

- For constant volume process:
- $\Delta V=0, P \Delta V=0$
$-\quad \Delta E_{V}=q_{v}+w=q_{v}+0=q_{v}=\Delta H$

Represents the Energy balance between heat in/out \& work in/out.

The second law of Thermodynamics

- $2^{\text {nd }}$ law answers the question:
- What can happen, what can't
- What is the Direction of change.
- Why do endothermic processes happen?
- Why don't some exothermic processes happen?
- What determines the direction of change?

Spontaneous Process

- Spontaneous change
- Happens on its own
- An irreversible process.
- Example: The gas in vessel B will spontaneously effuse into vessel A,
- But ,once in both vessels, it will not spontaneously return to vessel B.

This process is spontaneous

This process is not spontaneous © 2012 Pearson Education, Inc.

Spontaneous Process

Process, spontaneous in one direction
nonspontaneous in the reverse direction.

Spontaneous does NOT mean immediate.

Can take a very long time.

Spontaneous Processes

- Processes that are spontaneous at one temperature may be nonspontaneous at other temperatures.
- Above $0^{\circ} \mathrm{C}$, it is spontaneous for ice to melt.
- Below $0^{\circ} \mathrm{C}$, the reverse process is spontaneous.

Spontaneous for $T>0^{\circ} \mathrm{C}$

Spontaneous for $T<0^{\circ} \mathrm{C}$

[^0]
Reversible Processes

System at higher temperature $T+\delta T$

Small increment of heat transferred from system to surroundings

Surroundings at temperature T
(a)

Surroundings at temperature T
(b)
the system changes in such a way that the system and surroundings can be put back in their original states by exactly reversing the process.

Irreversible Processes

- Irreversible processes cannot be undone by exactly reversing the change to the system.
- Spontaneous processes are irreversible.

$$
2^{\text {nd }} \text { law of thermodynamics }
$$

- What determines the direction of a process?
- What determines whether a process is spontaneous or not?
- Entropy.

What is Entropy (S)?

Entropy

- Entropy: a measure of the randomness of a system.
- Randomness, the possible states.

Entropy

- Like total energy, E, and enthalpy, H, entropy is a state function.
- Therefore,

$$
\Delta S=S_{\text {final }}-S_{\text {initial }}
$$

Entropy

For isothermal process:

$$
\Delta S=\frac{q_{\mathrm{rev}}}{T}
$$

This means that entropy change is a function of: heat transfer
Temperature the heat transfer is happening.

Second Law of Thermodynamics

 States:
entropy (randomness, disorder) of the

 universe:1. increases for spontaneous processes,
2. does not change for reversible processes.
$\Delta \mathrm{S}_{\text {univ. }}>0$ spontaneous (irreversible) process $\Delta S_{\text {univ. }}=0$ reversible process
$\Delta S_{\text {univ. }}>0$ for anything that happens (changes)

Second Law of Thermodynamics

In other words:

For reversible processes:

$$
\Delta S_{\text {univ }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}=0
$$

For irreversible processes:

$$
\Delta S_{\text {univ }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}>0
$$

Fntropy Changes in Surroundíngs

- Heat that flows into or out of the system changes the entropy of the surroundings.
- For an isothermal process:

$$
\Delta S_{\text {surr }}=\frac{-q_{\text {sys }}}{T}
$$

- At constant pressure, $q_{\text {sys }}$ is simply ΔH° for the system.

Fntropy Change in the Universe

- The universe is composed of the system and the surroundings.
- Therefore,

$$
\Delta S_{\text {universe }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}
$$

- For spontaneous processes

$$
\Delta S_{\text {universe }}>0
$$

Fntropy Change in the Universe

- Since

$$
\Delta S_{\text {surroundings }}=\frac{-q_{\text {system }}}{T}
$$

and

$$
q_{\text {system }}=\Delta H_{\text {system }}
$$

This becomes:

$$
\Delta S_{\text {universe }}=\Delta S_{\text {system }}+\frac{-\Delta H_{\text {system }}}{T}
$$

Multiplying both sides by $-T$, we get

$$
-T \Delta S_{\text {universe }}=\Delta H_{\text {system }}-T \Delta S_{\text {system }}
$$

Gibbs Free Energy

- $-T \Delta S_{\text {universe }}$ is defined as the Gibbs free energy, ΔG.
- $\Delta S_{\text {universe }}$ positive, ΔG negative.
- ΔG negative, process spontaneous (happens).
- $\Delta G=\Delta H_{\text {system }}-T \Delta S_{\text {system }}$

Gibbs Free Energy

1. If ΔG is negative, the forward reaction is spontaneous.
2. If ΔG is 0 , the system is at equilibrium.
3. If ΔG is positive, the reaction is spontaneous in the reverse direction.

$\mathcal{F r e e}$ Energy and \mathcal{T} emperature

- There are two parts to the free energy equation:
ΔH° — the enthalpy term
- $T \Delta S^{\circ}$ - the entropy term
- The temperature dependence of free energy then comes from the entropy term.

Gibbs free energy examples

- ICE \rightarrow WATER ($\mathrm{T}>0^{\circ} \mathrm{C}$)
- ΔH
- ΔS
- ΔG
- WATER \rightarrow ICE $\left(\mathrm{T}<0^{\circ} \mathrm{C}\right)$
- ΔH
- ΔS
- ΔG

Gibbs free energy examples

- ICE \rightarrow WATER ($\mathrm{T}>0^{\circ} \mathrm{C}$)
- $\Delta H+$
- $\Delta S+$
- ΔG -

Entropy driven

- WATER \rightarrow ICE ($\mathrm{T}<0^{\circ} \mathrm{C}$)
- ΔH -
- ΔS -
- ΔG -
- Enthalpy driven.

Changes of state

Фhase transformations, changes of state

- The heat added to the system at the melting and boiling points goes into pulling the molecules farther apart from each other.
- The temperature of the substance does not rise during a phase change.

Vapor Pressure

- At any


```
Blue area \(=\) number of molecules having enough energy to evaporate at lower temperature
```

$$
\begin{aligned}
& \text { Red }+ \text { blue areas }=\text { number of } \\
& \text { molecules having enough energy to } \\
& \text { evaporate at higher temperature }
\end{aligned}
$$

temperature
some molecules in a liquid have enough energy to break free.

As T rises, Higher ave. K.E.
More molecules
Break free

Vapor Pressure

Evacuated flask, pressure zero

Molecules begin to vaporize, pressure increases

Vapor Pressure

Evacuated flask, pressure zero

Molecules begin to vaporize, pressure increases

Molecules leave and enter liquid at equal rates, pressure reaches steady-state value
liquid molecules evaporate and vapor molecules condense at the same rate.

Dynamic equilibrium

Vapor Pressure

- boiling point temperature at which vapor pressure = atmospheric pressure.

Trouton's rule

- At equilibrium:
- $\Delta \mathrm{G}_{\mathrm{v}}=0=\Delta \mathrm{H}_{\mathrm{v}}-\mathrm{T} \Delta \mathrm{S}_{\mathrm{v}}$
- $\Delta \mathrm{S}_{\mathrm{v}}=\Delta \mathrm{H}_{\mathrm{v}} / \mathrm{T}$ is approximately $=85 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
- Why should entropy for vaporization be constant?
- The difference in entropy (randomness) between any gas and any liquid is similar.
- Gas: very similar (little interaction)
- Liquids, not as dependable.

巨hase Díaarams

Temperature
display how the state of a substance (solid, liquid gas) changes versus T , and P .
Shows where states are in equilibrium
By pressure, we mean vapor pressure.

Temperature
tion, Inc.
The liquid-vapor line: starts at the triple point (T), where all three states are in equilibrium
ends at the critical point (C), above which the liquid and vapor are the same.

The line between liquid and solid marks the melting point of a substance at each pressure.

- Below triple poirt substance cannot be liquid.
- Along the solid-gas line, the sublimation point at each pressure is along this line. Solid/gas equilib.

Water is different

- high critical temperature and critical pressure.
- strong van der Waals forces favors liquid/solid.

Фhase Diagram of Water

slope of the solid/liquid line negative.

- As P is increases T just below the melting point, water goes from a solid to a liquid.

Exam prep opportunities

- LRC Mock Exam: Tuesday, November 13th, 6 - 8:30pm in room N100 BCC
- (RSVP at Irc.msu.edu)
- LRC Review: Thursday, November 15th, 6 - 8:30pm in room N100 BCC
- review session
- Sunday, November 18th 4-6pm in room
- 138 Chemistry. Your students are welcome to attend.

Solutions

Solutions

ations: homogeneous mixtures of two or more pure stances.

Solutions

vent: Determines the state (solid, liquid gas)
» Alternatively the one in greatest amount.
dtes: Everything else

Types of Solutions

- Saturated
- solvent holds as much solute as is possible at that temperature.
- Dissolved solute is in dynamic equilibrium with solid solute.

SoIntupers ofers Solutions
 NaCl allow solid to dissolve

Hydrated Cl^{-}ion Hydrated Na^{+}ion

- Unsaturated
- less solute in solution than possible at that T.

Seed crystal of sodium acetate added to supersaturated solution - 2012 Peasson Eucation, Inc.

- Supersaturated
- solvent holds more solute than is normally possible at that temperature.
- Solution is thermodynamically unstable; crystallization is spontaneous, but needs seed or vibration to get started.
- Like a spontaneous reaction that needs a match.

Ways of Expressing
 Concentrations of Solutions

© 2012 Pearson Education, Inc.

$$
\begin{gathered}
\text { Molarity }(\mathcal{M}) \\
M=\frac{\text { moles of solute }}{\text { liters of solution }}
\end{gathered}
$$

- Since volume is temperaturedependent, molarity can change with temperature.

$$
\begin{gathered}
\text { Molalíty (} m \text {) } \\
m=\frac{\text { moles of solute }}{\text { kilograms of solvent }}
\end{gathered}
$$

moles \& mass, amounts temperature independent so:
molality (unlike molarity) is not temperature-dependent.

Mass Percentage

Mass $\%$ of $A=\frac{\text { mass of } A \text { in solution }}{\text { total mass of solution }} \times 100$

Sarts per Miltion and Sarts per Biflíon

Parts per million (ppm)

ppm =
 $\frac{\text { mass of } A \text { in solution }}{\text { total mass of solution }} \times 10^{6}$

Parts per billion (ppb)

$$
\mathrm{ppb}=\frac{\text { mass of } A \text { in solution }}{\text { total mass of solution }} \times 10^{9}
$$

Mole Fraction (χ)

$X_{A}=\frac{\text { moles of } A}{\text { total moles of all components }}$

Changing Molarity to Molality

If we know the density of the solution, we can calculate the molality from the molarity, and vice versa.

Fxamples

1. The density of a 19% solution of HCl is 1.0929 gmL^{-1}. What is the molarity?
$19 \%=190 \mathrm{~g} / 1000 \mathrm{~g}$ solution.
$\mathrm{MW}=36.45 \mathrm{~g} / \mathrm{mol} \quad 190 \mathrm{~g} / 36.45 \mathrm{gmol}^{-1}=5.2$ moles

Mass solution/D $=\mathrm{V}$ solution.
$1000 \mathrm{~g} / 1.0929 \mathrm{gmL}^{-1}=914.996 \mathrm{~mL}$ solution

Molarity $=5.2$ moles $/ .914996 \mathrm{~L}=5.7 \mathrm{M}$

Examples

1. What is the mole fraction of HCl in 19% this solution?

Moles HCl in $1000 \mathrm{~g}: 190 \mathrm{~g} / 36.45 \mathrm{gmol}^{-1}=5.2$ moles Moles water in $1000 \mathrm{~g}: 1000-190=810 \mathrm{~g}$ water. $810 \mathrm{~g} / 18 \mathrm{gmol}^{-1}=4.5$ moles water.

Mole fraction $=$ moles $\mathrm{HCl} /$ tot. moles $=5.2 /(4.5+5.2)$
$5.2 / 9.7=0.54$

The Solution Process

Solvent-solute interactions
between water molecules and NaCl allow solid to dissolve

Hydrated Cl^{-}ion
Hydrated Na^{+}ion
Dissolution (díssolving): A "war breaks out" between: solute-solute interactions and Solute-solvent interactions.

\mathcal{H} ow Does a Solution Form?

Solvent-solute interactions
between water molecules and
NaCl allow solid to dissolve

© 2012 Pearson Education, Inc.
As a solution forms, the solvent pulls solute particles apart and surrounds, or solvates, them.

How Does a Solution Form?

Dipole-dipole

If an ionic salt is soluble in water, it is because the iondipole interactions are strong enough to overcome the lattice energy of the salt crystal.

Energy Changes in Solution

Exothermic solution process
-2012 - Separation of solute particles,

- Separation of solvent particles,
- New interactions between solute and solvent.

Why Do Endothermic Processes Occur?

Endothermic solution process
Can a solute dissolve if the lattice energy is greater than the energy of solvation?

Various possibilíties

$$
\begin{array}{lll}
\Delta \mathrm{G}= & \Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} \\
\Delta \mathrm{H} & \Delta \mathrm{~S} & \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} \\
- & + & \text { always }- \\
- & - & \text { depends } \\
+ & + & \text { depends } \\
- & - & \text { always }+
\end{array}
$$

Always spontaneous
Often for gas solutes
Often for ionic solutes
Never spontaneous

Exam topics:

Exam 3: Covers lecture 20-32.

Lewis structures
VSEPR, shape, geometry
Hybridization
Valence bond theory.
Gases, PV = nRT
Bonding in the solid state
crystalline structure.
Inter-atomic forces

Exam topics:

Exam 3: Covers lecture 20-32.

Entropy and Gibbs free energy.
$2^{\text {nd }}$ law of thermodynamics
Changes of state
vapor pressure
phase diagrams
Solutions
types (saturated, supersaturated, unsaturated)
Thermo of solutions
concentration of solutions.

Why Do Endothermic Processes Occur?

Endothermic solution process

Yes! Dissolving
$\mathrm{NH}_{4} \mathrm{NO}_{3}$ is
endothermic (brings in heat)
So: lattice Energy was
greater than heat of solvation.
(interactions between solute and solvent)

Enthalpy Is Only Part of the Picture

Must be Entropy driven. Randomness of system must get bigger.

Solid \rightarrow liquid $\Delta S+$
Dissolving solid in liquid should always be +.

Exothermic solution process

Enthalpy Is Only Part of the Picture

So even though enthalpy may increase, the overall energy of the system can still decrease if the system becomes more disordered.

Exothermic solution process

Collígative Propertíes

- Changes in colligative properties depend only on the number of solute particles present, not on the identity of the solute particles.
- Among colligative properties are
- Vapor-pressure lowering
- Boiling-point elevation
- Melting-point depression
- Osmotic pressure

Vapor Pressure

Volatile solvent particles
Nonvolatile solute particles

Equilibrium

Rate of vaporization reduced by presence of nonvolatile solute

Equilibrium reestablished with fewer molecules in gas phase

Because of solute-solvent intermolecular attraction, higher concentrations of nonvolatile solutes make it harder for solvent to escape to the vapor phase.

Vapor Pressure

Therefore, the vapor pressure of a solution is lower than that of the pure solvent.

$$
\begin{aligned}
& \text { Raoult's Law } \\
& P_{A}=X_{A} P_{A}^{\circ}
\end{aligned}
$$

where
$-X_{A}$ is the mole fraction of compound A, and
$-P_{A}^{\circ}$ is the normal vapor pressure of A at that temperature.

Note: This is one of those times when you want to make sure you have the vapor pressure of the solvent.

Vapor pressure above solution = the sum of all the partial vapor pressures of all components Partial V.P. depends on 2 things:

1. How much (mole fraction)?
2. How volatile (V.P. of pure A)

Raoult's Law

$$
P_{A}=X_{A} P_{A}^{\circ}
$$

$-X_{A}$ is the mole fraction of compound A, and $-P_{A}^{\circ}$ is the normal vapor pressure of A at that temperature.

$$
-P_{\text {tot }}=P_{A}+P_{B}=X_{A} P_{A}^{\circ}+X_{B} P_{B}^{\circ}
$$

Colligative properties \& non volatile solvents

- If solute is nonvolatile: $P_{\text {solute }}^{\circ}=0$.
- So: $P_{\text {tot }}=P_{A}+P_{B}=X_{A} P_{A}{ }^{\circ}=X_{\text {solvent }} P_{\text {solvent }}{ }^{\circ}$
- Addition of nonvolatile solute will decrease $X_{\text {solvent }}$
- And so decrease vapor pressure.
- But why?

Colligative properties \& non volatile solvents

Pure

Colligative properties \& non volatile solvents liquid changes Vapor and solid, pure.
Entropy of solution increases vs. pure liquid
$\Delta G_{V}=0$ (equilibrium)
$\Delta \mathrm{H}_{\mathrm{V}}=$ constant (solvent)
$\Delta G_{V}=\Delta H_{V}-T \Delta S_{V}$ so $-T \Delta S_{V}=$ constant (solvent)
ΔS_{V} smaller, T larger (boiling pt. elevation)
$\Delta \mathrm{S}_{\mathrm{V}}$ larger, T smaller (freezing pt depression)

B.P. Elevation and F.P Depression

Solution boiling point
Colligative properties
b.p. elevation
f. p. depression
-depend on number of particles

B.P. Elevation and $\mathcal{F} . \mathcal{P}$ Depression

b.p. elevation
f. p. depression

Colligative properties -depend on number of particles

Example 1 mole NaCl versus 1 mole sugar:
$\mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-} 2$ moles particles Van't Hoff factor (i): 2
Sugar \rightarrow Sugar (1 mole particles) Van't Hoff factor (i): 1

Fxamples

Substance i
NaCl
KNO_{3}
$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
HCl
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$

Examples

$\Delta \mathrm{T}=\mathbf{K m i}$
K = constant (depends on solvent
$\mathrm{m}=$ molality (moles solute/Kg solvent)
i = Van't Hoff factor

Examples

Which substance has the lowest freezing pt.?
1.5 m NaCl
$1.2 \mathrm{~m} \mathrm{Na}_{2} \mathrm{SO}_{4}$
3.0 m sugar
$1.6 \mathrm{~m} \mathrm{KNO}_{3}$

$\Delta \mathrm{T}=\mathrm{Kmi}$
$\mathrm{K}=$ constant (depends on solvent
$\mathrm{m}=$ molality (moles solute/Kg solvent)
i = Van't Hoff factor

Examples

Which substance has the lowest freezing pt.?
1.5 m NaCl
$1.2 \mathrm{~m} \mathrm{Na}_{2} \mathrm{SO}_{4}$
3.0 m sugar
$1.6 \mathrm{~m} \mathrm{KNO}_{3}$

3 m part
3.6 m part.

3 m part.
3.2 m part.

$\Delta \mathrm{T}=\mathrm{Kmi}$

K constant, depends on $\mathbf{m}^{*} \mathbf{i}$

Examples

When 1.0 mole of magnesium acetate was dissolved in water, the b.pt. increased by $6^{\circ} \mathrm{C}$ to $106{ }^{\circ} \mathrm{C}$. How much water was used to make the solution?

Examples

When 1.0 mole of magnesium acetate was dissolved in water, the b.pt. increased by $6^{\circ} \mathrm{C}$ to $106{ }^{\circ} \mathrm{C}$. How much water was used to make the solution? $\left(\mathrm{K}_{\mathrm{B}}\left(\mathrm{H}_{2} \mathrm{O}\right)=0.5\right.$?
$\mathrm{m}=\mathrm{n}_{\text {solute }} / \mathrm{Kg}_{\text {solvent }}$
$\mathrm{Mg}(\mathrm{Ac})_{2} \mathrm{i}=2$
$\Delta \mathrm{T}=\mathrm{Kmi}$
$6=0.5(1.0 / \mathrm{Kg}) 2$
$6=1 / \mathrm{Kg}$
$\mathrm{Kg}=0.2 \mathrm{Kg}(0.16666 \mathrm{Kg})$

'Unit 34.

Introduction to chemical equilibrium
Why do reactions happen?

Charting the path of a reaction, One molecule at a tíme.

Reaction coordinate

Reaction coordinate.

Reaction coordinate
NO_{2}
Reactants

activated complex
$\mathrm{NO} \quad \mathrm{CO}_{2}$ products

Reaction coordinate.

Reaction coordinate
$\mathrm{NO}_{2} \quad \mathrm{CO}$
Reactants
$\mathrm{O}-\mathrm{N}--\mathrm{O}---\mathrm{C}-\mathrm{O}$ activated complex products

For a reaction to happen: 1. species much collide
2. Must collide with enough E
3. Must be oriented right.

Thermodynamic vs. Kinetic product.

Reaction coordinate
Kinetic product: smaller hill to climb, higher E product

- not enough E, Kinetic product.

Thermodynamic product: Higher hill to climb, lower E product.
Plenty of E, thermodynamic product.

Chemical kinetics How fast will it go?

The more activated complexes formed, the faster the reaction.

1. Increase collision frequency (higher concentration
2. Increase collision energy (higher T).

Reaction coordinate

Chemical kinetics: Concentration

The more activated complexes formed, the faster the reaction.

1. Increase collision frequency (higher concentration
2. Increase collision energy (higher T).

[^0]: © 2012 Pearson Education, Inc.

