Lecture 11 thermodynamics

We'll be dealing with the *energy* of chemical reactions

How do you keep track of it? Where does it come from?

Energy

- Can come from a variety of sources:
 - ➤ Light (photochemistry)
 - ➤ Electricity (electrochemistry)
 - ➤ Heat (thermochemistry)

What is Energy?

- The ability to:
- do work
- transfer heat.
 - Work: Energy used to cause an object that has mass to move.
 - ➤ Heat: Energy used to cause the temperature of an object to rise.

Work

- Energy used to move an object over some distance.
- $w = F \cdot d$,

w = work,

F = force

d = distance over which the force
is exerted.

Note units:

F = ma, mass(distance/s²) W = F(d) = mass(distance²/s²)= mv²

(a)

(b)
Copyright © 2006 Pearson Prentice Hall, Inc.

Thermochemistry

Heat

- Energy can also be transferred as heat.
- Heat flows from warmer objects to cooler objects.

Kinetic Energy

Energy an object possesses by virtue of its motion.

$$KE = \frac{1}{2}mv^2$$

Potential Energy

Energy an object possesses by virtue of its position or chemical composition.

More potential E

Thermochemistry

Transferal of Energy

a) Add P.E. to a ball by lifting it to the top of the wall

Transferal of Energy

 a) Add P.E. to a ball by lifting it to the top of the wall

b) As the ball falls,

P.E ----> K. E. $(1/2mv^2)$

Transferal of Energy

a) Add P.E. to a ball by lifting it to the top of the wall

b) As the ball falls,

P.E ----> K. E. $(1/2mv^2)$

- 1. Ball gets squashed
- 2. Heat comes out.

Energy accounting

 We must identify where different types of energy go.

Therefore, we must identify the places.

System and Surroundings

- The system includes the molecules we want to study (here, the hydrogen and oxygen molecules).
- The surroundings are everything else (here, the cylinder and piston).

First Law of Thermodynamics

- Energy is conserved.
- In other words, the total energy of the universe is a constant; $\Delta E_{System} = -\Lambda E_{surroundings}$

Internal Energy

The internal energy of a system is the sum of all kinetic and potential energies of all components of the system; we call it *E*.

$$E_{\text{internal,total}} = E_{\text{KE}} + E_{\text{PE}} + E_{\text{electrons}} + E_{\text{nuclei}} + \dots$$

Almost impossible to calculate total internal energy

Instead we always look at the *change* in energy (ΔE).

Internal Energy

By definition, the change in internal energy, ΔE , is the final energy of the system minus the initial energy of the system:

Changes in Internal Energy

If ∆E > 0, E_{final} > E_{initial}
 Therefore, the system absorbed energy from the surroundings.

Changes in Internal Energy

If ∆E < 0, E_{final} < E_{initial}
 Therefore, the system released energy to the surroundings.

Changes in Internal Energy

- When energy is exchanged between the system and the surroundings, it is exchanged as either heat (q) or work (w).
- That is, $\Delta E = q + w$.

ΔE , q, w, and Their Signs

For *q* + means system *gains* heat — means system *loses* heat

For w + means work done on system - means work done by system

For ΔE + means *net gain* of energy by system – means *net loss* of energy by system

Sign of work

Exchange of Heat between System and Surroundings

• When heat is absorbed by the system from the surroundings, the process is **endothermic.**

Exchange of Heat between System and Surroundings

- When heat is absorbed by the system from the surroundings, the process is endothermic.
- When heat is released by the system to the surroundings, the process is exothermic.

Units of Energy

The SI unit of energy is the joule (J).

$$1 J = 1 \frac{\text{kg m}^2}{\text{s}^2}$$

 An older, non-SI unit is still in widespread use: The calorie (cal).

$$1 \text{ cal} = 4.184 \text{ J}$$

Energy has units of (mass)(velocity)² Remember kinetic energy was 1/2mv²

Energy, specific heat and temperature change

Calorimetry

How is heat measured? Calorimetry

Color = heat

metry = measure

A calorimeter is a device for measuring heat transfer

How does this work?

Heat Capacity and Specific Heat

- Heat capacity
- The amount of energy required to raise the temperature of an object by 1 K (1°C) is its heat capacity.
- We define specific heat capacity (or simply specific heat) as the amount of energy required to raise the temperature of 1 g of a specific substance by 1 K.

Heat Capacity and Specific Heat

$$s = \frac{q}{m \Delta T}$$

Heat change(q) = specific heat(s) * mass(m) * temp. change(T)
$$J \qquad JK^{-1}g^{-1} \qquad g \qquad K$$

$$sm\Delta T = q$$

Examples

- How much heat is required to raise the temperature of 50 g of water from 20° C to 45 °C? Sp. Heat = 4.184 JK⁻¹g⁻¹
- $Q = sm(T_{final}-T_{init})$
- Q = $4.184 \text{ JK}^{-1}\text{g}^{-1}*50 \text{ g}*(45 20 ^{\circ}\text{C}) = 5230 \text{ J}$
- How much will the temperature rise if 1000 J of energy are used to heat a 10g block of copper (s_{Cu} =0.385 JK⁻¹g⁻¹)
- 1000 J = 0.385 JK⁻¹g⁻¹*10g* Δ T
- ΔT=260 °C

Lecture 12 Energy and changes of state

- Change of state:
- Solid → liquid liquid → solid
- Liquid → gas gas → liquid
- A change of state will occur at a constant T.
 melting ice will stay at 0°C until all the
 ice is melted. You can't heat ice to higher T
 than 0 °C at 1 atm.

Example calculate heat used in above (10g). Five stages:

Heat ice: $2.1 \, \text{JK}^{-1} \text{g}^{-1} * \, 10 \, \text{g} * 10 \, \text{°C} = 210 \, \text{J} \, (\text{sm} \Delta \text{T}, \, \text{s}_{\text{ice}} = 2.1 \, \text{JK}^{-1} \, \text{g}^{-1})$

Melt ice: $333Jg^{-1}*10g = 3330 J$ (g(heat of fusion_{wat})

Heat water: 4.185*10g*100°C=4184 J

Vaporize water: 2260 Jg⁻¹*10g=22600J (g(heat of vap_{wat})

Heat steam: $2.0 \text{ JK}^{-1}\text{g}^{-1}*10\text{g}(10^{\circ}\text{C})=200 \text{ J} (s_{\text{steam}}=2.0 \text{ JK}^{\text{Fl}}\text{gr}^{\text{1}})$

Work and heat

- 2 possibilities:
 - ➤1 The system does not expand. Then, there can be no force over a distance (F·D) and no work.
 - $\Delta E = q + w = q_v$ constant volume.
 - ▶2. The system expands and work is done.

Work

process in an open container (chemical reaction in a beaker)

w? (can there be any work)?

Yes, evolving gases could push on the surroundings.

Catch the work, do the same process in a cylinder.

Process evolves gas, pushes on piston, work done on piston

Catch the work, do the same process in a cylinder

Note: P is constant.

$$w = F*d, F = P*A, d=\Delta h$$

 $w = -P*A \wedge h = -P \wedge V$

Negative because an *increase* in Volume means that the system is doing work on the surroundings.

$$\Delta E = q + w = q - P\Delta V$$

 $q_P = \Delta E + P\Delta V$

Catch the work, do the same process in a cylinder

Note: P is constant.

$$w = F*d, F = P*A, d=\Delta h$$

 $w = -P*A \wedge h = -P \wedge V$

Negative because an *increase* in Volume means that the system is doing work on the surroundings.

$$\Delta E = q + w = q - P\Delta V$$

 $q_P = \Delta E + P\Delta V$

Enthalpy

- $\Delta E = q + w = q P\Delta V$
- $q_P = \Delta E + P\Delta V$
- A new function is defined, Enthalpy (H)
- H = E + PV
- $\Delta H = \Delta E + P \Delta V = q_P$

Enthalpy means "heat inside" or "heat content"

Change in enthalpy is the heat gained or lost by a system at constant pressure. The difference between ΔH and ΔE is small for chemical reactions that do not involve a change in gas volume (solids and liquids don't have much change in volume).

The case of chemical reactions

Hess's law

Hess's Law

- ΔH is known for many reactions.
- measuring ΔH can be a pain
- Can we estimate ΔH using ΔH values for other reactions?

Hess's Law

Yes!

Hess's law: states that:

ΔH for the overall reaction will be equal to the sum of the enthalpy changes for the individual steps.

Hess's Law

Why?

Because ΔH is a state function, and is pathway independent.

Only depends on initial state of the reactants and the final state of the products.

 Given the enthalpy changes for the following reactions:

• C(s) + O₂
$$\rightarrow$$
 CO(g) + 1/2O₂(g) Δ H = -110 kJ

•
$$C(s) + O_2 \rightarrow CO_2(g)$$
 $\Delta H = -394 \text{ kJ}$

- What is ΔH for the following reaction:
- $CO(g) + 1/2O_2(g) \rightarrow CO_2(g)$

 Given the enthalpy changes for the following reactions:

• C(s) + O₂
$$\rightarrow$$
 CO(g) + 1/2O₂(g) Δ H = -110 kJ

• C(s) + O₂
$$\rightarrow$$
 CO₂(g) Δ H = -394 kJ

- What is ΔH for the following reaction:
- $CO(g) + 1/2O_2(g) \rightarrow CO_2(g)$
- 1. reverse 1st reaction to get reactants:
- $CO(g) + 1/2O_2(g) \rightarrow C(s) + O_2 \Delta H = 110 \text{ kJ}$

$$C(s) + O_2 \rightarrow CO(g) + 1/2O_2(g) \Delta H = -110 kJ$$

$$C(s) + O_2 \rightarrow CO_2(g)$$
 $\Delta H = -394 \text{ kJ}$

$$\Delta H = -394 \text{ kJ}$$

What is ΔH for the following reaction:

$$CO(g) + 1/2O_2(g) \rightarrow CO_2(g)$$

1. reverse 1st reaction to get reactants:

$$CO(g) + 1/2O_2(g) \rightarrow C(s) + O_2 \Delta H = 110 \text{ kJ}$$

2. Add 2nd reaction:

$$C(s) + O_2 \rightarrow CO_2(g) \Delta H = -394 \text{ kJ}$$

$$C(s) + O_2 \rightarrow CO(g) + 1/2O_2(g) \Delta H = -110 kJ$$

$$C(s) + O_2 \rightarrow CO_2(g)$$
 $\Delta H = -394 \text{ kJ}$

What is ΔH for the following reaction:

$$CO(g) + 1/2O_2(g) \rightarrow CO_2(g)$$

1. reverse 1st reaction to get reactants:

$$CO(g) + 1/2O_2(g) \rightarrow C(s) + O_2 \Delta H = 110 \text{ kJ}$$

2. Add 2nd reaction:

$$C(s) + O_2 \rightarrow CO_2(g) \Delta H = -394 kJ$$

Thermochemistry

$$CO(g) + 1/2O_2(g) \rightarrow CO_2(g)$$
 $\Delta H = -284 \text{ kJ}$

- Given:
- $N_2(g) + O_2(g)$ ----> 2NO(g) $\Delta H = 180.7 \text{ kJ}$
- $2NO(g) + O_2(g) ----> 2NO_2(g) \Delta H = -113.1 \text{ kJ}$
- $2N_2O(g)$ ----> $2N_2(g)$ + $O_2(g)$ $\Delta H = -163.2$ kJ
- use Hess's law to calculate ΔH for the reaction:
- $N_2O(g) + NO_2(g) ----> 3NO(g)$

• Given:

•
$$N_2(g) + O_2(g)$$
 ----> $2NO(g)$ $\Delta H = 180.7 \text{ kJ}$

•
$$2NO(g) + O_2(g) ----> 2NO_2(g)$$
 $\Delta H = -113.1 \text{ kJ}$

•
$$2N_2O(g)$$
 ----> $2N_2(g)$ + $O_2(g)$ $\Delta H = -163.2 \text{ kJ}$

- use Hess's law to calculate ΔH for the reaction:
- $N_2O(g) + NO_2(g) ----> 3NO(g)$

•
$$N_2O(g)$$
 ----> $N_2(g)$ + $1/2O_2(g)$ ΔH =-163.2/2 = -81.6 kJ

•NO₂(g) ----> NO(g) +
$$\frac{1}{20}$$
(g) $\Delta H = 113.1 \text{ kJ/2} = 56.6 \text{ kJ}$

•
$$N_2(g) + O_2(g)$$
 ----> 2NO(g) $\Delta H =$ 180.7 kJ

•
$$N_2O(g) + NO_2(g) ----> 3NO(g)$$

$$\Delta H = 155.7$$
Th Jochemistry

Enthalpies of Formation

An enthalpy of formation, ΔH_f , is defined as the ΔH for the reaction in which a compound is made from its constituent elements in their elemental forms.

That's what we did for the Thermite reaction:

•2Al +
$$Fe_2O_3$$
 ----> Al_2O_3 + 2Fe

•What is the heat of reaction given:

•2Fe +
$$3/2O_2$$
 ----> Fe₂O₃ $\Delta H = -825.5 \text{ KJ}$
•2Al + $3/2O_2$ ----> Al₂O₃ $\Delta H = -1675.7 \text{ KJ}$

$$C_3H_8(g) + 5 O_2(g) \longrightarrow 3 CO_2(g) + 4 H_2O(l)$$

Imagine this as occurring in 3 steps:

$$C_3H_8(g) \longrightarrow 3C_{\text{(graphite)}} + 4H_2(g)$$

$$C_3H_8(g) + 5 O_2(g) \longrightarrow 3 CO_2(g) + 4 H_2O(l)$$

Imagine this as occurring in 3 steps:

$$C_3H_8(g) \longrightarrow 3 C_{\text{(graphite)}} + 4 H_2(g)$$

$$3 C_{\text{(graphite)}} + 3 O_2(g) \longrightarrow 3 CO_2(g)$$

$$C_3H_8(g) + 5 O_2(g) \longrightarrow 3 CO_2(g) + 4 H_2O(f)$$

Imagine this as occurring in 3 steps:

$$C_3H_8(g) \longrightarrow 3 C_{\text{(graphite)}} + 4 H_2(g)$$

$$3 C_{\text{(graphite)}} + 3 O_2(g) \longrightarrow 3 CO_2(g)$$

$$4 H_2(g) + 2 O_2(g) \longrightarrow 4 H_2O(f)$$

$$C_3H_8(g) + 5 O_2(g) \longrightarrow 3 CO_2(g) + 4 H_2O(f)$$

The sum of these equations is:

$$C_3H_8(g) \longrightarrow 3C_{\text{(graphite)}} + 4H_2(g)$$

$$3C_{\text{(graphite)}} + 3O_2(g) \longrightarrow 3CO_2(g)$$

$$4H_2(g) + 2O_2(g) \longrightarrow 4H_2O(f)$$

$$C_3H_8(g) + 5 O_2(g) \longrightarrow 3 CO_2(g) + 4 H_2O(l)$$

Make each reactant or product from its elements
This is called the heat of formation of a compound

We can use Hess's law in this way:

$$\Delta H = \sum_{i} n \Delta H_{f(products)}^{\circ} - \sum_{i} m \Delta H_{f(reactants)}^{\circ}$$

where *n* and *m* are the stoichiometric coefficients.

Standard Enthalpies of Formation

Standard enthalpies of formation, ΔH_f , are measured under standard conditions (25°C and 1.00 atm pressure).

Substance	Formula	ΔH_f° (kJ/mol)	Substance	Formula	$\Delta H_f^{\circ}(\mathrm{kJ/mol})$
Acetylene	$C_2H_2(g)$	226.7	Hydrogen chloride	HCl(g)	-92.30
Ammonia	$NH_3(g)$	-46.19	Hydrogen fluoride	HF(g)	-268.60
Benzene	$C_6H_6(l)$	49.0	Hydrogen iodide	HI(g)	25.9
Calcium carbonate	$CaCO_3(s)$	-1207.1	Methane	$CH_4(g)$	-74.80
Calcium oxide	CaO(s)	-635.5	Methanol	$CH_3OH(l)$	-238.6
Carbon dioxide	$CO_2(g)$	-393.5	Propane	$C_3H_8(g)$	-103.85
Carbon monoxide	CO(g)	-110.5	Silver chloride	AgCl(s)	-127.0
Diamond	C(s)	1.88	Sodium bicarbonate	$NaHCO_3(s)$	-947.7
Ethane	$C_2H_6(g)$	-84.68	Sodium carbonate	$Na_2CO_3(s)$ 1	- 130.9
Ethanol	$C_2H_5OH(l)$	-277.7	Sodium chloride	NaCl(s)	-410.9
Ethylene	$C_2H_4(g)$	52.30	Sucrose	$C_{12}H_{22}O_{11}(s)$	-2221
Glucose	$C_6H_{12}O_6(s)$	-1273	Water	$H_2O(l)$	-285.8
Hydrogen bromide	HBr(g)	-36.23	Water vapor	$H_2O(g)$	-241.8

- Calculate ΔH using the table:
- $C_3H_8 + 5O_2 ----> 3CO_2 + 4H_2O$

Substance	Formula	ΔH_f° (kJ/mol)	Substance	Formula	$\Delta H_f^{\circ}(\mathrm{kJ/mol})$
Acetylene	$C_2H_2(g)$	226.7	Hydrogen chloride	HCl(g)	-92.30
Ammonia	$NH_3(g)$	-46.19	Hydrogen fluoride	HF(g)	-268.60
Benzene	$C_6H_6(l)$	49.0	Hydrogen iodide	HI(g)	25.9
Calcium carbonate	$CaCO_3(s)$	-1207.1	Methane	$CH_4(g)$	-74.80
Calcium oxide	CaO(s)	-635.5	Methanol	$CH_3OH(l)$	-238.6
Carbon dioxide	$CO_2(g)$	-393.5	Propane	$C_3H_8(g)$	-103.85
Carbon monoxide	CO(g)	-110.5	Silver chloride	AgCl(s)	-127.0
Diamond	C(s)	1.88	Sodium bicarbonate	$NaHCO_3(s)$	-947.7
Ethane	$C_2H_6(g)$	-84.68	Sodium carbonate	$Na_2CO_3(s)$ 1	-130.9
Ethanol	$C_2H_5OH(l)$	-277.7	Sodium chloride	NaCl(s)	-410.9
Ethylene	$C_2H_4(g)$	52.30	Sucrose	$C_{12}H_{22}O_{11}(s)$	-2221
Glucose	$C_6H_{12}O_6(s)$	-1273	Water	$H_2O(l)$	-285.8
Hydrogen bromide	HBr(g)	-36.23	Water vapor	$H_2O(g)$	-241.8

• $C_3H_8 + 5O_2 ----> 3CO_2 + 4H_2O$

$$\Delta H = [3(\Delta H_f CO_2) + 4(\Delta H_f H_2 O)] - [(\Delta H_f C_3 H_8) + (5\Delta H_f O_2)]$$

- = [3(-393.5 kJ) + 4(-285.8 kJ)] [(-103.85 kJ) + 5(0)]
- = [-1180.5 kJ + (-1143.2 kJ)] [(-103.85 kJ) + 0 kJ]
- = [-2323.7 kJ] [-103.85 kJ)
- = -2219.9 kJ

Making and Breaking bonds i.e. a chemical reaction

- When a bond is formed, energy is released
 - ➤ An exothermic process
- When a bond is broken, energy is required
 - ➤ An endothermic proces

Example

Example: Calculate the heat of formation ΔH_f of hydrazine N_2H_4 Using the bond energies given.

N—N 159 Jmol⁻¹
N≡N 946
N—H 389
H—H 436

N=N
$$H_{H}$$
N=N H_{H}

$$946+ 2(436) -(159 + 4(389))$$

= 103 kJ

Thermochemistry

Example

Given:
$$H + H \rightarrow H_2(g)$$
 $\Delta H = -436 \text{ kJ}$
 $C(s) \rightarrow C(g) \Delta H = 717 \text{ kJ (sublimation)}$

Heat of formation of methane is: $\Delta H_f = -75 \text{ kJmol}^{-1}$

What is the bond energy of a CH bond?

Sketch an energy cycle:

