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Second and third-order dispersion for water, methanol, cyclohexane, carbon tetra-
chloride, dimethyl sulfoxide, toluene and carbon disulfide are measured with high
accuracy and precision in the range of 700-900 nm using two-cycle long femtosec-
ond laser pulses. The ratio between second and third-order dispersion, which is
predicted to vary linearly, is experimentally confirmed and this observation is exam-
ined theoretically. A method to predict second and third-order dispersion of unknown
transparent media with accuracy that is comparable to the best experimental methods
is proposed and tested. The information provided is important for applications of
ultrafast lasers in science, medicine and industry. Copyright 2011 Author(s). This
article is distributed under a Creative Commons Attribution 3.0 Unported License.
[doi:10.1063/1.3646462]

I. INTRODUCTION

A number of applications such as nonlinear optical microscopy, nonlinear spectroscopy, fem-
tosecond laser eye surgery and femtosecond micromachining, require the delivery of minimally
dispersed pulses at the intended target. Unfortunately, short pulses undergo chromatic dispersion,
which results in temporal broadening, as the pulses are transmitted through a medium. Applications
as well as scientific experiments with femtosecond laser pulses require knowledge of the dispersive
properties of gaseous, liquid and solid state media. This need was predicted 25 years ago, when a
landmark theoretical study was published that compared the second, third and fourth derivative of
refractive indices of the most common optical media.1 Remarkably, at the time there appeared to
be a linear relation between the different orders of derivatives of refractive indices. Moreover, this
ratio between the different orders seemed independent of optical media. This supposed linear rela-
tionship has been used to estimate the extent of high order correction to the wavelength dependent
refractive index when no dispersion measurements are available. Alternatively, index of refraction
measurements numerically fitted by phenomenological (Sellmeier’s) equation are also used to deter-
mine dispersion.1, 2 However, given that dispersion depends on high-order derivatives of the index
of refraction, such estimates are not very accurate.

In this study, we revisit the relation between second and third order dispersion (SOD and TOD,
respectively), and provide a new formulation that can be used to determine TOD for any medium (gas,
liquid, or solid) provided the region of interest is far from optical resonances. The new formulation
is tested for different media, including some of the most common optical media used for ultrafast
laser studies.

Dispersion results when a pulse of light transmits through a medium with a frequency dependent
refractive index, as illustrated in Fig. 1. Note that as the pulse propagates, the term k(ω) is frequency
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FIG. 1. Schematic diagram representing the phase distortions of a pulse as it propagates through a medium with a frequency-
dependent wavenumber vector k(ω).

dependent. Therefore an ultrashort laser pulse, with a broad spectral bandwidth, experiences different
k(ω) values. The refractive index, which is proportional to k(ω), is affected by the oscillator strength
and frequency of electronic and vibrational resonances of the medium. For transparent media, one
may assume that there is a single resonance in the vacuum ultraviolet region and dispersion primarily
depends on the oscillator strength of that resonance. Beyond this simple, single electronic resonance
explanation, only accurate experimental methods are able to provide SOD and TOD values for
media of interest. Here we present a series of such measurements and provide a method to predict
the dispersion of other transparent media.

As the pulse duration of femtosecond lasers available commercially continues to get shorter,
reaching the single cycle regime in some cases, higher order dispersion of optical media become
important and can cause significant pulse broadening. In determining the need for considering
third order dispersion correction, we find it useful to consider the ratio between the bandwidth
�ω and the carrier frequency of the pulse ω0. For pulses with �ω/ω0>0.1, third order dispersion
begins to play a role, and for octave spanning lasers �ω/ω0<0.25 even higher order terms must be
determined. White light interferometry has been the method of choice to measure dispersion with
very good accuracy.3, 4 More recently method that measures directly higher order dispersion5 based
on multiphoton intrapulse interference phase scan (MIIPS) was introduced,6, 7 and here we use this
method to measure the second and third order dispersion of common solvents used in femtosecond
research.

II. THEORY

We begin our discussion from fundamental definitions. The wave number is defined as
k(ω)=ωn(ω)/c, where ω is the angular frequency of light, n(ω) is the refractive index of the medium,
c is the speed of light. As a pulse propagates through a medium it undergoes chromatic dispersion as
illustrated in Fig. 1. The phase accumulated by a pulse as it propagates through a medium of length
L can be expressed as the Taylor series expansion near the carrier frequency ω0

ϕ (ω) = [
k0 + k ′ (ω − ω0) + 1

2 k ′′ (ω − ω0)2 + 1
6 k ′′′ (ω − ω0)3 + ...

]
L (1)

In the expression above, the first two terms cause no dispersion. The first order term causes a time
delay of magnitude k′(ω) = dk(ω)/dω = ϕ′(ω)/L = dϕ(ω)/dω/L. The second and higher order terms
cause dispersion. For a given unit length, the second order phase distortion (k′′(ω) = d2k(ω)/dω2

= ϕ′′(ω)/L = d2ϕ(ω)/dω2/L) is defined as SOD, also known as group velocity dispersion (GVD).
The third order term (k′′′(ω) = d3k(ω)/dω3 = ϕ′′′(ω)/L = d3ϕ(ω)/dω3/L) is known as TOD. For
carrier frequencies far from resonance and pulses longer than two optical cycles, GVD and TOD are
sufficient to predict pulse broadening. In the presence of resonances or when a pulse is transmitted
through or reflected from artificially constructed optics such as fibers or dielectric mirrors, higher
order terms are required to account for abrupt changes in dispersion, within the bandwidth of the
pulse regardless of pulse duration.
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As mentioned earlier, a relation between different orders of dispersion has been explored in order
to predict higher order terms, which until recently have been difficult to measure. This was illustrated
theoretically in 1985 by Bor and Racz.1 However deviations from that theoretical prediction have
been noted when compared to values derived from the best available index of refraction data and
its approximation by Sellmeier equations. Exploring dispersion in the frequency domain allows us
to explain the parameters of the medium that affect the ratio between different orders of dispersion
and gives us a general insight into dispersion.

For media with only one strong resonance with oscillator strength A and at frequency ω1, the
refractive index may be expressed as

n(ω) =
√

1 + A

1 − ω2/ω2
1

, (2)

this expression is similar to a single term Sellmeier equation. It is interesting to note that for
frequencies far from optical absorption (ω << ω1), k′′(ω), and k′′′(ω) obey the following relation8

(see Supplementary Information Sec I for the derivation).

ω
k ′′′(ω)

k ′′(ω)
= 1 + 5ω2

ω2
1

[
1 + 1

3(1 + A)

]
(3)

We see from equation (3) that ω1, plays an important role in determining the ratio between k′′ and k′′′.
For gases, with approximately three orders of magnitude lower density than liquids, A is negligible
and can be ignored. Thus for gases:

ω
k ′′′ (ω)

k ′′ (ω)
≈ 1 + 20ω2

3ω2
1

. (4)

A gross approximation could be made by setting ω1=∞, based on the fact that typically ω1>>

ω. If one assumes the resonance frequency is much higher than the carrier frequency then one
obtains the simplest expression given as Equation (5), however significant deviations occur even
when Ti:Sapphire laser interacts with a transparent media with a resonance near 200 nm, as will be
shown in the results section.

ω
k ′′′(ω)

k ′′(ω)
= 1. (5)

Here we explore the ratio between k′′ and k′′′ for various media commonly used in femtosecond
time-resolved spectroscopy and relevant to the design of ultrafast laser applications. We evaluate the
different approximations using experimentally determined values and provide a guideline to estimate
GVD and TOD for all media studied here and even for media for which no dispersion information
is available.

III. EXPERIMENTAL

Measurements are performed using an ultrabroad bandwidth femtosecond Ti:Al2O3 (Venteon)
laser oscillator with specially designed chirped mirrors, having a spectrum spanning 630–1050 nm
(see Fig. 2(a)), capable of producing sub-5 fs pulses.9 For pulses centered at 800 nm, a two-cycle
long pulse corresponds to a pulse duration of 5.3 fs Full Width at Half Maximum (FWHM). The
pulse duration obtained with this laser oscillator was found to be as short as 4.3 fs FWHM, reported
in our earlier publication.7 The oscillator output is directed to a pulse shaper for phase measurement
and elimination of high order dispersion using MIIPS.6, 7 The high resolution pulse shaper used for
this work has all-reflective optics and a 640-pixel dual-mask spatial light modulator (640 DM SLM,
CRi.). After the shaper, the pulses are focused onto a 20 μm type-I KDP crystal, and the SHG signal
is detected by a spectrometer (QE65000, Ocean Optics Incorporated). The resulting SHG spectrum
after compensation for chromatic dispersion is shown in Fig. 2(b).

For the phase measurements, the medium is introduced between the pulse shaper and the SHG
crystal (Fig. 2(c)). Note the beam was not focused on the sample; it had a diameter of 8mm and
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FIG. 2. (a) Spectrum of the ultrabroad-bandwidth femtosecond laser used for this work. (b) Experimental SHG spectrum
after compensating the phase distortions with MIIPS. (c) Block diagram of the experimental set-up. M1-M10 are flat mirrors;
C1 -C3 are curved mirrors. The rectangle with the prism is used to separate the resulting SHG.

average power of 40mW. The peak power density at the sample is estimated at 105 W/cm2, when
transform limited. This is orders of magnitude below the power required for the beam to experience
nonlinear optical phase distortions such as self-phase modulation or self-focusing. For measuring
liquids, an empty quartz cuvette (to hold the medium) is introduced and measured to compensate the
phase distortions caused by the empty cuvette. Phase distortions of the system are eliminated using
MIIPS.6, 7 Briefly, MIIPS is a method that measures the phase of femtosecond pulses by introducing
reference phases via a pulse shaper. When the reference phase introduced is linear chirp, correspond-
ing to k′′(ω)=constant, changes in the second harmonic spectrum yield directly a measurement of
ϕ′′(ω).10 These measurements are self-referencing and have interferometric accuracy.7 The MIIPS
algorithm integrates the measured ϕ′′(ω) to obtain the phase. More importantly it introduces a com-
pensation phase -ϕ(ω), which compensates the dispersion and determines how far the pulses are
from the theoretical (Fourier transform of the laser pulse spectrum) limit. The algorithm iterates
until the pulses are within 1% or better from the transform limit. Afterwards the desired medium is
introduced, and its chromatic dispersion is measured using MIIPS. Given that chromatic dispersion
varies linearly with the sample thickness, the second-order dispersion per unit length (mm) k′′(ω) is
directly obtained.

IV. RESULT AND DISCUSSION

Dispersion measurements carried out for some of the most common solvents used in ultrafast
laser research are presented in Fig. 3. The error bars for each liquid represent the standard deviation
from six different experimental measurements, and give an estimate of the precision of our measure-
ments. The error bars are shown only at selected wavelengths for clarity. Note the measurements are
more precise within the 750-850 nm spectral region and the precision deteriorates below 700 nm
and above 900 nm.

For each liquid, the experimental data (700 nm – 900 nm) is fitted to a polynomial in the
frequency domain (ω-ω0), where ω0 is taken to correspond to 800 nm. GVD (k′′) and TOD (k′′′) are
extracted from the fitting coefficients. GVD measurements for seven common solvents at 23.3oC
are listed in Table I. The TOD (k) values at 800 nm for the same solvents are listed later in Table III.
The GVD (k′′) and TOD (k′′′) values for water at 800 nm, reported in literature,5, 11 and derived from
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FIG. 3. GVD measurements for commonly used solvents obtained at 23.3oC. The error bars represents the standard deviation
of six different experimental observations.

TABLE I. Experimental GVD (k′′) measurements of Water, Methanol, Cyclohexane, CCl4, DMSO, Toluene and CS2 using
MIIPS at 23.3oC.

Wavelength Water Methanol Cyclohexane CCl4 DMSO Toluene CS2

(nm) (fs2/mm) (fs2/mm) (fs2/mm) (fs2/mm) (fs2/mm) (fs2/mm) (fs2/mm)

700 35.3±0.3 40.0±0.9 60±4 72.7±2.4 82.7±7.8 119.6±4.5 257.5±3
725 32.4±0.9 37.1±0.3 56.4±1.6 70.4±2.3 80.9±2.4 117.1±1.6 242.0±2.5
750 29.7±0.6 34.6±0.4 53.6±1.5 68.0±1.3 78.5±1.3 113.9±2.2 227.9±2
775 27.0±0.4 32.4±0.1 51.0±0.8 65.6±0.6 75.7±1.8 109.9±1.8 215.2±1
800 24.4±0.8 30.4±0.1 48.8±0.7 63.1±0.7 72.7±1.1 105.7±1.1 203.5±2.7
825 21.8±0.7 28.7±0.2 46.7±1.1 60.6±0.9 69.4±1.5 100.9±1.5 192.8±1.2
850 19.4±0.9 27.2±0.2 44.9±0.9 58.2±0.9 66.0±1.5 96.0±1.6 183.0±1.5
875 17.1±0.5 25.9±0.4 43.3±0.5 55.7±1 62.4±2 90.8±1.4 173.9±2.7
900 14.8±0.7 24.7±0.5 41.8±0.7 53.3±1.7 58.7±2.3 85.5±2.5 165.5±6.2

Sellmeier’s constants,12 are in excellent agreement with our values (see Table II and Table III for
comparison).

When k′′′ is plotted as a function of k′′, all transparent media (solids, liquids, and gases) can
be visualized within the framework of a single general model (see Theory). The values for k′′′ for
different transparent optical media, including solids,6 liquids and gases,13 are plotted against the
corresponding value for k′′ (see Fig. 4(a)). The red line shows the best fit line for all the media
except (water and CS2). The black solid line corresponds to ω1 → ∞. The slope of the best fit line is
1.39±0.05. This experimentally observed ratio is useful in predicting TOD at any frequency based
on a known GVD (ωk′′′ ≈ 1.4 k′′). The value for k′′′ calculated from its corresponding k′′ at 800 nm
is listed in Table III.

The third derivative of the refractive index with respect to wavelength is plotted versus the
second derivative of the refractive index with respect to wavelength for different optical media
at 800 nm in Fig. 4(b). The red line shows best fit line of the experimental data. The black line
represents theoretical prediction corresponding to ω1 → ∞. We experimentally verify the linear
relationship between different orders of refractive indices,1, 14 however, notice that the frequency
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TABLE II. Comparison of experimentally observed k′′ and calculated k′′ from literature at 800nm.

k′′,fs2/mm
Liquids a b c d

Water 24.4 ± 0.8 24.76± 0.135 24.912 47.912

24.8 ± 0.511

Methanol 30.40±0.1 33.56±0.0515 37.616 38.216

Cyclohexane 48.8 ±0.7 - 51.816 50.216

CCl4 63.1±0.7 - - -
DMSO 72.7±1.1 - 75.816 76.516

Toluene 105.7±1.1 - 107.917 106.917

CS2 203.5±2.7 - 226.117 226.517

aOur Experiment
bLiterature
cDerived from Sellmeier/Cauchy’s equation
dDerived using known values of refractive indices at two different wavelengths (using optical properties).
(See Supplementary Information8 for actual values used for these calculations)
*The superscript represents the reference.

TABLE III. Comparison of experimentally observed TOD (k′′′) with calculated from different models.

k′′′, fs3/mm
Liquids a b c d E

Water 34.8 ± 0.2 34.25 32.912 22.712 14.4
27±311

Methanol 24.8±0.1 - 13.016 17.716 17.9
Cyclohexane 29.2±0.3 - 29.416 23.316 28.8
CCl4 33.5±0.2 - - - 37.3
DMSO 43.1±0.4 - 37.816 36.716 42.9
Toluene 61.5±0.2 - 58.617 53.217 62.4
CS2 151.9±0.9 - 115.317 123.917 120.1

aOur Experiment
bLiterature
cDerived from Sellmeier/Cauchy’s equation
dDerived using known values of refractive indexes (using optical properties).(See supplementary information8)
eDerived from our experimental data (GVD).
*The superscript represents the reference.

FIG. 4. (a) Third order dispersion vs. Second order dispersion of different optical media at 800nm. Dispersion for gases
given per meter path length instead of per mm. Data for solid and gases (green and purple) are taken from literature.6, 13 The
red solid line is the best fit of the experimental data. The black solid line corresponds to theoretical prediction when there is
only one resonance at infinity frequency ω1→∞, or λ1=0. (b) The same data as (a) but presented as dependence of index of
refraction in wavelength domain. The red line is the best fit, note that this plot is much less sensitive to differences between
optical media and less deviates from a line with slope 1,see Supplementary Information.8
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domain comparison given in Fig. 4(a) is much more sensitive than the derivatives of the index of
refraction as shown in Fig. 4(b).

As mentioned earlier, it is common practice to derive k′′ from Sellmeier equations. We have com-
pared our measured k′′ with that calculated from Sellmeier’s equation/Cauchy’s equation (Table II).
Because the values or interest depend on second and third order derivatives, even the Sellmeier or
Cauchy equations obtained using the best experimental refractive index measurements yield inac-
curate second and especially third order dispersion. Using the values of the refractive indices of the
medium at two different wavelengths, however, one can find the parameters A and ω1 in Equation (2),
and obtain n(ω). We have generated k′′ and k′′′ for each medium, using refractive indices at only two
wavelengths from literature and listed them in Table II and Table III respectively. See supplementary
information8 Sec II for exact values used. With this approach, k′′ of Toluene is predicted within 1%
of our experimental measurement. Table II clearly shows that given the optical properties of the
medium A, ω1 (or refractive index at two different wavelengths), k′′ can be predicted with an error
less than 6% for most of the media. Note that for water, methanol and CS2 the deviation is greater
due to known vibrational resonances in the near infrared.

TOD measurements are more difficult to perform than GVD measurements, and only few TOD
measurements are reported in the literature. Our reported k′′′ value (34.8 ± 0.2 fs3/mm) for water,
has good agreement with the literature (34.2 fs3/mm5 and 27±3 fs3/mm ).11 We have compared our
experimentally observed k′′′ with k′′′ calculated from different models (see Table III). We used k′′

(from our experimental data, column (a)) to calculate k′′′ (column(e)) using ωk′′′ = 1.4 k′′. Using the
refractive index at two wavelengths from the literature,16, 17 k′′′ obtained for Toluene and DMSO is
within 14% and 15% respectively of the experimentally determined values. From Table III, we can
clearly see that we can predict TOD with an error less than 20% for most media (except water and
methanol) using their optical properties.

The proposed predictive approach based on Equation (2) (single UV resonance) is not very
accurate in spectral regions that are close to optical absorption of the medium of interest. However,
in the wavelength range of this study (700 nm-900nm), one can apply Equation (2) successfully
provided the medium has a single absorption in the UV. In our experimental observations we see that
values for water, methanol, CS2, and quartz deviate from the single UV resonance approximation.
The absorption of water,18 methanol19, 20 and CS2

21 in the near IR explains the reason why the
approximation of a single resonance fails. The OH content of quartz and the absorption of OH in
the near IR22 causes the deviation from the predicted value observed for quartz.

According to theory (Eq. (3)), the ratio of k′′ and k′′′ is constant. For most media, we have found
A is 1.2±0.3 and based on a single resonance model, the optical absorption ω1 is 100-200 nm (see
supplementary information8 Sec II). Typical values for A and ω1 make the ratio almost independent
of the media as clearly observed in Fig 4. The experimentally observed ratio (1.39±0.05 at 800nm)
is very useful since it can predict k′′′ only from k′′. Once k′′ is obtained at a particular wavelength, the
k′′ for a range of wavelengths can be calculated using, k′′=k′′

0+ k′′′
0(ω-ω0). For example, given k′′

0

at 800nm, k′′′
0 (at 800nm) can be predicted using the experimentally determined slope. Using these

k′′
0 and k′′′

0 values, GVD values at other wavelengths (say 700 nm or 900nm) can also be calculated.
For transparent media, where k′′′≈3/2× k′′/ω0, one can estimate phase distortion far from

resonance for a pulse with width �ω using a Taylor expansion up to third term

�φ ∼= L

2
k ′′�ω2 + L

6
k ′′′�ω3 ∼= L

2
k ′′�ω2

(
1 + 1.5

3

�ω

ω0

)
= �φ(2)

(
1 + �ω

2ω0

)
(6)

If phase distortion from the SOD is �ϕ(2) then contribution from TOD will be �ϕ(2)×�ω/2ω0. Of
course this estimation is valid for media for which TOD is proportional to SOD. For water and CS2

the ratio is larger than 1.4 and the effects are even larger, therefore the magnitude of �ω/ω0 is very
important.

To highlight the effect of higher order dispersion on pulse properties, we calculated the con-
tribution of each term on pulse broadening (τ /τ TL, where τ TL is pulse duration of the transform
limited (TL) or shortest pulse supported by the available spectral bandwidth) and second harmonic
spectral narrowing (�2ω/�2ωTL, where �2ωTL is spectral width of the second harmonic generated
by a TL pulse). These results are shown in Table IV. The calculations assume Gaussian pulses with
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TABLE IV. Calculated Pulse Broadening (τ /τTL) and Second Harmonic Spectral Narrowing (�2ω/�2ωTL) for ultrashort
pulses with �ω/ω0=1/4

Toluene, 1cm Water, 1 cm Quartz, 1 cm Air, 10 m

�ω

ωo
= 1/4

τ

τT L

�2ω

�2ωT L

τ

τT L

�2ω

�2ωT L

τ

τT L

�2ω

�2ωT L

τ

τT L

�2ω

�2ωT L
k′′ 133.1 1 30.6 1 45.2 1 24.9 1
k′′′ 2.4 0.11 2.0 0.19 2.0 0.19 1.5 0.46

�ω/ω0=1/4, the carrier frequency ω0 corresponds to 800 nm, and the pulse duration 4.7 fs. Values
for k′′ and k′′′ are taken from experimental results reported in Tables II and III and from reference 6
and 13 (for quartz and air respectively). We have chosen a path-length of 10m for air and 1 cm for the
rest of the optical media. The simulation results indicate a 30-130 times temporal broadening with
the introduction of second order dispersion (k′′) and about 2 times temporal broadening originated
from the third order dispersion (k′′′) for the dense media. Ten meter propagation in air causes a
25 times lengthening of the pulse. Odd order dispersion terms do not make the pulse significantly
longer, but cause significant SHG spectral narrowing, while even order dispersion terms cause no
spectral narrowing of second harmonic generation. We evaluated the changes that would be expected
for fourth and fifth order dispersion. However, given the uncertainty in their estimated magnitude
and their relatively small contribution we decided not to include them.

V. CONCLUSION

In this work, we have studied high-order dispersion introduced by solvents commonly used in
ultrafast laser spectroscopy. These measurements are particularly relevant given that ultrashort laser
sources with spectra approaching an octave are now commercially available. The values of second
and third order dispersions for water at 800 nm, reported in,5, 11 and derived from phenomenological
equations,12 are in excellent agreement with our values (see Table II and Table III). For all transparent
media without optical resonances close to the measured spectral region, the slope between ωk′′′ and
k′′ is found to be approximately equal to 1.4, a ratio independent of media. This experimentally
found ratio should be useful in estimation of third order dispersion (k′′′) based on a known second
order dispersion (k′′). We have related the slope between k′′′ and k′′ to optical properties of the
media, specifically the oscillator strength and optical resonance. Given the difficulty of measuring
high-order dispersion with high accuracy and precision, a general framework to estimate dispersion
for all transparent optical media (solids, liquids, gases) is proposed. Based on values for the index
of refraction of a medium at two wavelengths, we predicted all orders of optical dispersion values
that are close to those found experimentally. The proposed methods for estimating high-order
dispersion are recommended for transparent natural media. The simulation indicated that a large
temporal broadening and narrowing of nonlinear spectra originated from nonlinear dispersions of
the octave pulses in the common optical media. The values reported here, and the method proposed
for estimating high-order dispersion for other optical media should be of importance for numerous
applications of ultrashort pulses in scientific research, as well as in medicine and industry. We remark
that for artificial media, such as dielectric coatings, fibers and other photonic constructs, dispersion
can vary sharply as a function of frequency. In those cases, only direct measurements approaches
can determine the phase introduced by the medium.23
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