State-of-the-art instrumentation to examine the structure, dynamics, and function of biologically important macromolecules
 
 

 
 
 

 
 
NMR Applications

 

Today, NMR has become a sophisticated and powerful analytical technology that has found a variety of applications in many disciplines of scientific research, medicine, and various industries. Modern NMR spectroscopy has been emphasizing the application in biomolecular systems and plays an important role in structural biology. With developments in both methodology and instrumentation in the past two decades, NMR has become one of the most powerful and versatile spectroscopic techniques for the analysis of biomacromolecules, allowing characterization of biomacromolecules and their complexes up to 100 kDa. Together with X-ray crystallography, NMR spectroscopy is one of the two leading technologies for the structure determination of biomacromolecules at atomic resolution. In addition, NMR provides unique and important molecular motional and interaction profiles containing pivotal information on protein function. The information is also critical in drug development. Some of the applications of NMR spectroscopy are listed below:

  • Solution structure The only method for atomic-resolution structure determination of biomacromolecules in aqueous solutions under near physiological conditions or membrane mimeric environments.
  • Molecular dynamics The most powerful technique for quantifying motional properties of biomacromolecules.
  • Protein folding The most powerful tool for determining the residual structures of unfolded proteins and the structures of folding intermediates.
  • Ionization state The most powerful tool for determining the chemical properties of functional groups in biomacromolecules, such as the ionization states of ionizable groups at the active sites of enzymes.
  • Weak intermolecular interactions Allowing weak functional interactions between macrobiomolecules (e.g., those with dissociation constants in the micromolar to millimolar range) to be studied, which is not possible with other technologies.
  • Protein hydration A power tool for the detection of interior water and its interaction with biomacromolecules.
  • Hydrogen bonding A unique technique for the DIRECT detection of hydrogen bonding interactions.
  • Drug screening and design Particularly useful for identifying drug leads and determining the conformations of the compounds bound to enzymes, receptors, and other proteins.
  • Native membrane protein Solid state NMR has the potential for determining atomic-resolution structures of domains of membrane proteins in their native membrane environments, including those with bound ligands.
  • Metabolite analysis A very powerful technology for metabolite analysis.
  • Chemical analysis A matured technique for chemical identification and conformational analysis of chemicals whether synthetic or natural.
  • Material science A powerful tool in the research of polymer chemistry and physics.


 

 


 

NMR building

900 NMR
HSQC
 
   
 
natsci logo    
 
[Home] [Nobel prize laureates] [NMR applications] [Expertise] [Instrumentation]
   
 
[Sample requirements] [NMR service request] [NMR time rates] [Contacts] [Links]