Chemistry 985

Fall, 2017 Distributed: Mon., 17 Oct. 17, 8:30AM Exam # 1 **OPEN BOOK** Due: 17 Oct. 17, 10:00AM

Some constants: $q_e 1.602 \times 10^{-19}$ Coul, $\epsilon_0 8.854 \times 10^{-12}$ F/m h 6.626x10⁻³⁴ J-s, c 299 792 458 m/s, 1 atm = 760 Torr = 101,325 Pa

 The figure below was taken from the UC-Berkeley website describing low background counting of wild fish: https://radwatch.berkeley.edu/salmon

The focus of the work was measuring relatively short-lived fission products such as ¹³⁷Cs in the environment. They state that "All samples were counted in the Low Background Facility, on a High Purity Germanium (HPGe) detector. [a very high resolution device to measure gamma rays] This detector is set up to be a very low background system, which allows it to detect very small amounts of radioactivity as compared to other systems. It is in a laboratory space constructed of very thick, low-radioactivity concrete and is equipped with an active veto system to reduce cosmic-ray muon induced backgrounds. "

The strongest signal in the detector is due to the single photon from the naturally occurring radioactive decay of 40 K. The signal from the decay of the 137 Cs fission product at 661 keV was also marked by the group. The authors report that the amount of 137 Cs in the 0.630 kg sample of fish was 0.14 ± 0.01 Bq/kg (one sigma).

- (a) (4 pts) Clearly and specifically identify the components in the spectrum that are marked as A, B, C, and D.
- (b) (6 pts) Given the reported activity and uncertainty, make an estimate of the length of time that this sample had to be measured to obtain the reported statistical accuracy.
- 2. The XP2020 photomultiplier is a very widely used two-inch diameter device with a very high gain. A technical data sheet for the XP2020 photomultiplier is attached at the end of this exam. Answer the following questions based on some of the information in that data sheet.
 - (a) (5 pts) What is the reported "typical" quantum efficiency of this PMT at a wavelength of 420 nm?
 - (b) (5 pts) Make an estimate of the value of δ for this tube operating with voltage divider "A" under "Typical" conditions?
- 3. The device shown in the photograph below has an aluminum vacuum chamber with an internal volume of 24 in x 24 in x 4 in (2304 cubic inches) or 37.76 liters. It is rough-pumped with an Agilent TriScroll 300 and then an Agilent TV-551 turbomolecular pump with an ISO-160 flange is used to attain the ultimate low pressure. Some information from the technical specifications of the TriScroll and TMP, respectively, is shown below.
 - (a) (3 pts) Make an estimate of how long it will take to reach the base pressure of the rough pump. Hint: Q = P S = -d(PV)/dt and P S = -V dP/dt for a closed system. This leads to P(t) = P_o e^{(-St/V)} for constant S.
 - (b) (2 pts) What is the theoretical base pressure of nitrogen for this pump combination based on the information in the technical specifications? Specify your dimensions.

Technical Specifications

Pumping speed	60 Hz 250 l/m, 15 m3/hr, 8.8 cfm			
Ultimate pressure	1.3 x 10 ⁻² mbar (1.0 x 10 ⁻² Torr)			
Maximum inlet pressure	1.0 atmosphere (0 psig)			
Maximum outlet pressure	1.1 atmosphere (1.5 psig)			
Inlet connection	NW25			

Technical Specification

CHARACTERISTIC	TV 551				
Pumping speed (with inlet screen)	CFF 6":	CFF 8"/ISO160:			
N ₂ :	350 l/s	550 l/s			
He:	450 l/s	600 l/s			
H _{2:}	450 l/s	510 l/s			
Compression ratio					
N2:	1 x 10 ⁹				
He:	1 x 10 ⁷				
H ₂ :	1 x 10 ⁶				

Tab. 3	Technical Specification
Tab. 3	Technical Specification

(c) (5 pts) Make an estimate of the base pressure after 1 hour of pumping for this chamber if it is fabricated from aluminum that has a $q = 8.5 \times 10^{-6}$ Pa-m/s at t = 1 hour. Specify your dimensions. Note that the TMP is essentially mounted directly onto the vacuum chamber.

- 4. (6 pts) The confirmation in 2013 of Element 115 claimed to have measured 30 atoms in a "three week run." Estimate the probability that this experiment went 1 day without observing an event.
- 5. Give short answers to the following questions.
 - (a) (2 pts) Describe the physical basis of the Fano factor for gas ionization counters.
 - (b) (2 pts) Describe when true coincident summing can be ignored in a gamma ray measurement and why.
 - (c) (2 pts) What is the Bragg Peak and where is it visible?
 - (d) (2 pts) The neutron walls at the NSCL use NE-213 liquid scintillator to detect neutrons in the presence of gamma rays. What is the physical basis for separating these two kinds particles by these detectors?

- (e) (2 pts) Describe what physical process forms (creates, causes, is responsible for) the output signal in a gas-filled proportional counter with a central wire anode.
- (f) (2 pts) What is the difference between the total efficiency and the intrinsic efficiency of a radiation detector?
- (g) (2 pts) What is the physical basis for avoiding using flexible (corrugated) tubes to make high vacuum connections?

Photomultiplier

12-stage 51mm (2"), Round tube

Application

- Energy physics
- Features
- ✓ Very Fast
 ✓ Very low noise
 ✓ Good linearity

XP2020

-											Typical spectral
Descriptio				_						Sk (n	nA/W)
Window ma					cate gla	ass					
Photocatho Refr. Index				Bi-alkal 1.48	I					100	
Multiplier st		m			ocused						
wulliplier su	luciule		1	Lineari	ocuseu						
Photocath	Photocathode characteristics						Тур	Ma	x Unit		
Spectral rar							270-65	60	nm	10	
	mum se	nsitivi	ty at :				420		nm		
Sensitivity :											
	nous :						70		µA/In		
Blue	-					7.5	10 80		µA/Im mA/V		
Radiant, at 420nm Characteristics with voltage divider A								Ma		v	
					ier A	Min	Typ 9	Ivia	x Unii		
Gain slope	· · · · ·	o. voit.	, iog/io	g)			-	,			
For a gain o							3x10 ⁷		V	0.1	
Supply volta	age *					1750	2000	260	0 V		100 200 300 400 500 600 700 800
Anode dark	current	*					10	100) nA		Wavelength (nm)
Background	l noise *						900	250	0 cps	Gain	Typical gain curve
Single elect	ron spe	ctrum	resolut	ion			70		%	Gain	
Peak to vall				-			2.5			1E+8	
Pulse ampli							7.2		%	1210	
Gain halved											
	endicula						0.15		mT		
	llel to av			001/		Min	0.12	Ma	mT x Unit	1E+7	
For a sup							Тур	Ivia		•	
Linearity (29		ode ci	urrent (up to :			25		mA		
Anode pulse	e: time:						1.6			1E+6	
	tion at h	olf ho	abt ·				3.7		ns ns		
	sit Time		igin .				28		ns		
							1E+5	C C			
Recomme	Recommended Voltage Divider								1210		
										_	
Type A for maximum gain							1E+4	000 1500 2000 2500 300			
., po A 101 11	aximun	gan									Vht(V)
K G	D1	D2	D3	D4	D5	D6	D7	D8 D	9 D10	D11	D12 A

Type A for maximum gain

 K
 G
 D1
 D2
 D3
 D4
 D5
 D6
 D7
 D8
 D9
 D10
 D11
 D12
 A

 1.2
 2.8
 1.2
 1.8
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</td

Type C for linearity

K G D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 A 1.2 2.8 1.2 1.8 1 1 1 1 1 1 1.5 1.5 3 2.5 (total : 21.5)

07/08/2007