HOMOCHIRALITY, SEED OF TERRESTRIAL LIFE

Hadi Gholami

October 23, 2013
Chirality

🌟 1840s - Louis Pasteur studied the crystalline and solution forms of (±)-tartaric acid

🌟 1894 - The introduction of the word “chiral” by Lord Kelvin

Chiral comes from the Greek word “Χείρ, Chir” meaning “HAND”

Hands are non-superimposable mirror images

(S) “Sinister” LEFT

(R) “Rectus” RIGHT
Types of Chirality

Point chirality

\[
\text{H}_3\text{C} - \text{CO}_2\text{H} \quad \text{(S)}
\]

\[
\text{H}_2\text{N} - \text{NH}_2 - \text{H} \quad \text{(R)}
\]

\[
\text{H}_2\text{N} - \text{H} \quad \text{(S)}
\]

\[
\text{H}_3\text{C} - \text{CO}_2\text{H} \quad \text{(S)}
\]
Types of Chirality

Point chirality

Helical chirality

(S)

(R)

(P)

(M)
Types of Chirality

Point chirality

- **H$_3$C\longrightarrowNH$_2$**
 - (S)
- **H$_3$C\longrightarrowCO$_2$H**
 - (R)

Helical chirality

- **[Image](image1.png)**

Axial chirality

- **[Image](image2.png)**
- **[Image](image3.png)**
- **[Image](image4.png)**
Different Chirality, Different Properties?

Different Taste
- S,S-isomer of Aspartame
- R,R-isomer of Aspartame

Different Smell
- (R) Spearmint oil
- (S) Caraway oil
- (R) Limonene
- (S) Limonene

Pharmaceuticals: Chirality matters!

(S)-Thalidomide

(R)-Thalidomide

(S)-isomer had the desired antinausea effects

(R)-form caused fetal abnormalities

Pharmaceuticals: Chirality matters!

(S)-Thalidomide

(R)-Thalidomide

(S)-isomer had the desired antinausea effects

(R)-form caused fetal abnormalities

Homochirality and Life

Homochirality: Nature selects almost exclusively one enantiomer over the other as building blocks for living organisms.
Homochirality and Life

Homochirality: Nature selects almost exclusively one enantiomer over the other as building blocks for living organisms.

Homochirality: Nature selects almost exclusively one enantiomer over the other as building blocks for living organisms.

Progression of Homochirality on Earth

Inducing Initial Enantio Imbalance → Amplification of Initial ee → Expansion of Chiral Pool
Progression of Homochirality on Earth

Inducing Initial Enantio Imbalance → Amplification of Initial ee → Expansion of Chiral Pool
Progression of Homochirality on Earth

Inducing Initial Enantio Imbalance -> Amplification of Initial ee -> Expansion of Chiral Pool

By chance

Circularly Polarized Light (Chiral Light)

and many more ...
It’s all about light?
From Prebiotic Soup to Chiral Organisms...

Enantiomeric imbalance was induced by **polarized light**, either somewhere in the universe (extraterrestrial) or directly on earth (terrestrial) resulting in small excess of one enantiomer of the biological building blocks over the other (chiral excess).

3.6-3.8 billion years ago
Stanley Miller’s Experiment

Light Storm

Energy from the spark drives the reaction between molecules

Water vapor was provided into the artificial atmosphere

Organic molecules including some **amino acids** were detected after a few days

http://www.studyblue.com/notes/n/exam-3-flashcards/deck/2577056
Revised Stanley Miller’s Experiment

UV photolysis of the mixture on ice
\[\text{H}_2\text{O}:\text{CH}_3\text{OH}:\text{NH}_3:\text{HCN} \]
20:2:1:1

Revised Stanley Miller’s Experiment

UV photolysis of the mixture on ice

\[\text{H}_2\text{O} : \text{CH}_3\text{OH} : \text{NH}_3 : \text{HCN} \]

20:2:1:1

- Light can induce biological building block formation.
- Non-chiral light cannot induce enantio excess (Homochirality)

What is Chiral Light?

Light → Polarizing Filter → Linear Polarized Light
What is Chiral Light?

Linear Polarized Light

http://www.photophysics.com/tutorials/circular-dichroism-cd-spectroscopy/1-understanding-circular-dichroism
What is Chiral Light?

Linear Polarized Light

Circularly Polarized Light (Chiral Light)

http://www.photophysics.com/tutorials/circular-dichroism-cd-spectroscopy/1-understanding-circular-dichroism
Induction of Chirality on Molecules by Circularly Polarized Light

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Wavelength Irradiated (nm)</th>
<th>Circularity of Light, %</th>
<th>Optical yield, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>410</td>
<td>75 (RCP)</td>
<td>2.00</td>
</tr>
<tr>
<td>2</td>
<td>390</td>
<td>75 (RCP)</td>
<td>1.96</td>
</tr>
<tr>
<td>3</td>
<td>370</td>
<td>75 (RCP)</td>
<td>1.77</td>
</tr>
<tr>
<td>4</td>
<td>290</td>
<td>75 (LCP)</td>
<td>-0.42</td>
</tr>
</tbody>
</table>

RCP, Right Handed Circular Polarized Light / LCP, Linear Polarized Light

But is There Any Circularly Polarized Light in the Universe?

Creation of Chiral Excess by Circularly Polarized Light
Measured Enantiomeric Excesses for 13C-Alanine

<table>
<thead>
<tr>
<th>Polarization Type</th>
<th>ee L-Ala (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearly polarized light (LPL)</td>
<td>-0.04</td>
</tr>
<tr>
<td>Left-handed circularly polarized light (L-CPL)</td>
<td>+0.71</td>
</tr>
<tr>
<td>Right-handed circularly polarized light (R-CPL)</td>
<td>-1.34</td>
</tr>
</tbody>
</table>

Can you Induce Chiral Excess in a Racemic Solution Using Circularly Polarized Light?

Enantiomeric excesses obtained after irradiation of racemic leucine with circularly polarized light.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Irradiation</th>
<th>ee (D-Leucine) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>L-CPL</td>
<td>-0.88</td>
</tr>
<tr>
<td>3</td>
<td>R-CPL</td>
<td>2.60</td>
</tr>
</tbody>
</table>

Why Enantiomers Interact Differently with Circularly Polarized Light

\[g = 2 \frac{\varepsilon_R - \varepsilon_S}{\varepsilon_R + \varepsilon_S} = 2 \frac{k_R - k_S}{k_R + k_S} \]

\(g \) : anisotropy factor
\(\varepsilon \) : extinction coefficient

Thick lines: Anisotropy spectra
Thin lines: corresponding \(e \theta \)

d-Val (orange) and l-Val (black)

H\(_2\)N-\(\text{Valine} \)-CO\(_2\)H

α-methyl L-amino acids were found on meteorites

2 proposed pathways:

Autocatalysis: Increase of ee via autocatalytic reactions

Crystallization:
i. Enrichment of enantiomeric purity by conglomerate crystallization in solid phase
ii. Racemic crystallization driven enantio-enrichment of the liquid phase
Demonstration of Autocatalysis

Autocatalysis: The chiral substrate acts as a catalyst for its self-production while suppressing synthesis of its enantiomer.

Proposed reaction scheme of asymmetric autocatalyst of (S)-1

Demonstration of Autocatalysis

Asymmetric autocatalysis of chiral alkanol (1).

Demonstration of Autocatalysis

Asymmetric autocatalysis of chiral alkanol (1).

Relation between the ee of catalyst (S)-1 and ee of the newly formed product (S)-1 in asymmetric autocatalytic reaction of (S)-1.
Racemic crystallization: crystals contain a 1 : 1 ratio of D : L enantiomers.

Conglomerate crystallization: A compound can be crystallized in purely one form of its enantiomer from its racemic mixture in liquid phase. Molecules in the crystal have a greater affinity for the same enantiomer than for the opposite enantiomer.

Racemic crystallization: crystals contain a 1 : 1 ratio of D : L enantiomers.

Conglomerate crystallization: A compound can be crystallized in purely one form of its enantiomer from its racemic mixture in liquid phase. Molecules in the crystal have a greater affinity for the same enantiomer than for the opposite enantiomer.

Racemic crystallization: crystals contain a 1 : 1 ratio of D : L enantiomers.

Conglomerate crystallization: A compound can be crystallized in purely one form of its enantiomer from its racemic mixture in liquid phase. Molecules in the crystal have a greater affinity for the same enantiomer than for the opposite enantiomer.

Racemic crystallization: crystals contain a 1 : 1 ratio of D : L enantiomers.

Conglomerate crystallization: A compound can be crystallized in purely one form of its enantiomer from its racemic mixture in liquid phase. Molecules in the crystal have a greater affinity for the same enantiomer than for the opposite enantiomer.

Random Chiral Symmetry Breaking During Conglomerate Crystallization

Random D or L homochirality from initial symmetric mixtures of D and L crystals.

sodium chlorate (NaClO$_3$), Racemic solution.

Solid-Solution Equilibrium for an Intrinsically Achiral Molecule

Chiral crystals, L or D in the sample (%)

Na$^+$[\(\text{O} \quad \text{O}^{-} \quad \text{Cl}^{-}\)]

Controlled Chiral Symmetry Breaking During Conglomerate Crystallization

sodium chlorate (NaClO₃)

Any small initial crystal enantiomeric excess (CEE) eventually gives rise to total crystal purity disappearing the less abundant enantiomer (100% CEE)

Conglomerate Crystallization for Molecules with Intrinsic Chirality

Solid-Solution Equilibrium for an Intrinsically Achiral Molecule

Conglomerate Crystallization for Molecules with Intrinsic Chirality

Solid-Solution Equilibrium for an Intrinsically Achiral Molecule

Solid-Solution Equilibrium for a Chiral Molecule Undergoing Solution-Phase Racemization

Single Solid Chiral State from a Nearly Racemic Amino Acid Derivative

Solid-Solution Equilibrium for a Chiral Molecule Undergoing Solution-Phase Racemization

Single Solid Chiral State from a Nearly Racemic Amino Acid Derivative

Solid-Solution Equilibrium for a Chiral Molecule Undergoing Solution-Phase Racemization

Chemical and Physical Equilibria in the Racemization and Crystallization / Dissolution Processes for 1.

Solid-Solution Equilibrium for a Chiral Molecule Undergoing Solution-Phase Racemization

Chemical and Physical Equilibria in the Racemization and Crystallization / Dissolution Processes for 1.

Single Solid Chiral State from a Nearly Racemic Amino Acid Derivative

\[\text{DBU} \quad \text{MeOH or MeCN} \quad 25^\circ \text{C} \]

\[(S)-1 \]
\[(R)-1 \]

\[(S)-1 \text{ (solid)} \]
\[(R)-1 \text{ (solid)} \]

Attrition-enhanced evolution of solid-phase ee for 1 in MeCN: starting from initial ee values of 1 as shown.

Evolution of Solid Phase Homochirality for a Natural Amino Acid

Evolution of Solid Phase Homochirality for a Natural Amino Acid

Racemic Crystallization Driven Liquid Phase ee Amplification

- Many compounds, including amino acids, their racemates are less soluble than the pure enantiomers.

\[
\text{Ph} \begin{array}{c} \text{CO}_2\text{H} \\ \text{NH}_2 \end{array}
\]

L-phenylalanine 1% ee, ≈500 mg

\[
\text{slow evaporation}
\]

Racemic crystals (≈ 400 mg)

\[
\text{solid removal}
\]

solution with 40% ee L-phenylalanine

Racemic Crystallization Driven Liquid Phase ee Amplification

- Many compounds, including amino acids, their racemates are less soluble than the pure enantiomers.

L-phenylalanine

- 1% ee, ≈500 mg
- 40% ee, ≈500 mg

Racemic crystals

- (≈ 400 mg)
- (≈ 100 mg)

Solution

- water solution with 40% ee L-phenylalanine
- water solution with 90% ee L-phenylalanine

Enantiomeric concentration amplification of phenylalanine after two crystallizations from water.

Racemic Crystallization Driven Liquid Phase ee Amplification

A solution with a small ee of an amino acid component were allowed to evaporate, there would be selective precipitation of the racemate crystals, leading to amplification of the ee concentration in solution.

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial ee, %</th>
<th>Final ee, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Phenylalanine</td>
<td>10</td>
<td>90.0</td>
</tr>
<tr>
<td>L-Phenylalanine</td>
<td>5</td>
<td>91.7</td>
</tr>
<tr>
<td>D-Phenylalanine</td>
<td>1</td>
<td>87.2</td>
</tr>
<tr>
<td>L-Phenylalanine</td>
<td>10</td>
<td>88.3</td>
</tr>
<tr>
<td>L-Phenylalanine</td>
<td>5</td>
<td>88.6</td>
</tr>
<tr>
<td>L-Phenylalanine</td>
<td>1</td>
<td>90.9</td>
</tr>
</tbody>
</table>

Enantiomeric concentration amplification of phenylalanine after two crystallizations from water.

Application of chiral amino acid to catalyze the prebiotic synthesis of other biological building blocks.
Chirality Transfer From α-Methyl Amino Acids

α-methyl L-valine + α-keto carboxylates

Cu$^{2+}$

- CO$_2$

H$^+$ transfer from α-methyl valine

Natural L-amino acids

Sugars Synthesis Catalyzed with α-Methyl Amino Acids

\[
\text{glycoaldehyde} + \text{S-isovaline} \\
\text{Asymmetric aldol}
\]

\[
\begin{align*}
\text{L-thereose} & : \text{HO} \cdots \text{OH} \\
\text{D-thereose} & : \text{HO} \cdots \text{OH} \\
\text{L-erythrose} & : \text{HO} \cdots \text{OH} \\
\text{D-erythrose} & : \text{HO} \cdots \text{OH}
\end{align*}
\]

Sugars Synthesis Catalyzed with α-Methyl Amino Acids

\[
\text{glycoaldehyde} + \text{S-isovaline} \xrightarrow{\text{Asymmetric aldol}} \begin{cases} \text{L-thereose} \\ \text{D-thereose} \\ \text{L-erythrose} \\ \text{D-erythrose} \end{cases}
\]

Sugars Synthesis Catalyzed with α-Methyl Amino Acids

\[
\text{glycoaldehyde} + \text{S-isovaline} \xrightarrow{\text{Asymmetric aldol}} \text{L-thereose} \quad \text{D-thereose} \quad \text{L-erythrose} \quad \text{D-erythrose}
\]

Enantiomeric excess (%) of amino acid catalysts:

- S-Iva (100%)
- R-Iva (100%)
- R-Iva (75%)
- R-Iva (50%)
- R-Iva (25%)
- R-Iva (10%)
- R-Iva (5%)
- DL-Ala (0%)
- D-Ala (100%)
- L-Ala (100%)

Sugars Synthesis Catalyzed with α-Methyl Amino Acids

\[
\text{glycoaldehyde} + \text{S-isovaline} \rightarrow \text{Asymmetric aldol}
\]

\[
\begin{align*}
\text{L-thereose} & \quad \text{D-thereose} \\
\text{L-erythrose} & \quad \text{D-erythrose}
\end{align*}
\]

Enantiomeric excess (%) of amino acids catalyzed with α-Methyl Amino Acids:

- L-(s)-Isovaline: 100%
- D-(s)-Valine: 100%
- L-(s)-Valine: 100%
- L-(s)-Isoleucine: 100%

Sugars Synthesis Catalyzed with Amino Acids

![Chemical structures and reactions](image)

<table>
<thead>
<tr>
<th>R</th>
<th>Amino acid</th>
<th>Glyceraldehyde ratio D/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>-CH₂OH</td>
<td>L-erine</td>
<td>50.3/49.7</td>
</tr>
<tr>
<td>-CH₃</td>
<td>L-alanine</td>
<td>50.8/49.2</td>
</tr>
<tr>
<td>-CH(CH₃)₂</td>
<td>L-valine</td>
<td>52.2/47.8</td>
</tr>
<tr>
<td>-CH₂-C₆H₅</td>
<td>L-phenylalanine</td>
<td>52.2/47.8</td>
</tr>
<tr>
<td>-CH₂-CH(CH₃)₂</td>
<td>L-leucine</td>
<td>54.4/45.6</td>
</tr>
<tr>
<td>-CH₂CH₂CO₂H</td>
<td>L-glutamic acid</td>
<td>60.7/39.3</td>
</tr>
<tr>
<td>♂</td>
<td>L-proline</td>
<td>28.9/71.1</td>
</tr>
</tbody>
</table>

pH Dependent Proline Catalyzed Amination of Aldehydes

\[\text{R}^1\text{CHO} + \text{R}^2\text{O}_2\text{C}-\text{N}^2\text{N}-\text{CO}_2\text{R}^2 \rightleftharpoons \overset{1)}{\text{Catalyst}} \overset{2)}{\text{NaBH}_4} \overset{3)}{\text{NaOH}} \rightarrow \overset{*}{\text{N-HCO}_2\text{R}^2} \]

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>ee, %</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CO}_2\text{H})</td>
<td>85%</td>
<td>(R)</td>
</tr>
<tr>
<td>(\text{CO}_2\text{H}), DBU</td>
<td>48%</td>
<td>(S)</td>
</tr>
<tr>
<td>(\Theta \text{CO}_2\text{Bu}_4\text{N})</td>
<td>60%</td>
<td>(S)</td>
</tr>
</tbody>
</table>

Enantiomeric Excess of Glyceraldehyde in the Presence of Proline and Prolinate Catalysts

Glycoaldehyde + Formaldehyde

L-proline

\begin{align*}
\text{L-Glyceraldehyde} & : (8\% \text{ ee}) \\
\text{D-Glyceraldehyde} & : (13\% \text{ ee})
\end{align*}

\begin{align*}
\text{Glycoaldehyde} & + \text{Formaldehyde} \\
\text{L-proline} & \quad \rightarrow \\
\text{L-Glyceraldehyde} & \quad (8\% \text{ ee}) \\
\text{D-Glyceraldehyde} & \quad (13\% \text{ ee})
\end{align*}

\begin{align*}
\text{Glycoaldehyde} & + \text{Formaldehyde} \\
\text{L-proline} & \quad \rightarrow \\
\text{L-Glyceraldehyde} & \quad (17\% \text{ ee})
\end{align*}

Conclusion

- We are all surrounded by chiral objects.
- Circularly polarized light can be a chiral template to induce chirality into biologically building blocks.
- L-Amino acids (natural and/or unnatural (α-methyl) amino acids) can be one of the primary chiral product formed in small ee under influence of chiral light.
- Small ee can be amplified via chemical and physical processes.
- L-Amino acids can act as chiral templates to induce chirality into other biological building blocks (D-sugars).
- It has been proposed that the observed homochirality on earth (L-amino acids and D-sugars) was selected to match with the overall chirality of this part of the universe.
Acknowledgements

Professor Babak Borhan

Professor Xuefei Huang

Dr. Chryssoula Vassiliou

Group members:

Arvind, Kumar, Carmin, Calvin

Tanya, Ipek, Maisam, Nastaran, Bardia, Yi,

Eddie, Elizabeth, Jun, Wei, Ding.

Mina

and

All of you for your attention.