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Chemistry 888 Spring 2010 
 
Section II 
 
Intermolecular Forces 
 
These arise from electromagnetic interactions — from the charged particles: electrons and 
protons that make up a molecule. 
 
There is some arbitrariness in what divides intra- from intermolecular forces. 
 
(The terms “forces” and “potentials” tend to be used interchangeably though of course force is 
the space derivative of potential. ) 
 
It is known that intermolecular potentials are repulsive at short distances and attractive at large 
distances. 
 
Repulsive Overlap Forces 
 
The Pauli exclusion principle says that electron clouds of two molecules cannot overlap.  So, the 
electron density between them is reduced.  This means that the positively charged nuclei are 
incompletely shielded and exert a repulsive force. 
 
Attractive Forces — There are three such potential contributions: 
 
1. Electrostatic.  When, e.g., a molecule possesses a permanent dipole moment (e.g. HCl), 

then there is an electrostatic interaction between the HCl’s.  There is no distortion of the 
charge distribution on interaction (by assumption) — a first order effect. 

 
 For example, the interaction of two point (d<<r, with d dipole dimension and separation 

between the two) dipoles is 
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Averaging over angles leads to U c
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2. Induction energy. 
 
An electric field E polarizes the atom 
(or molecule) (separates charge). 
 
 
E is the field from another molecule — treated as a dipole (see the following page). 
 
   p E= α  α  is polarizability of the atom (or molecule but then the 

polarizability is a second rank tensor – a 3X3 matrix). 
 
 When a molecule with permanent moment μ is placed in the field E, the amount of work 

is not only the potential Vm of the total moment 
 
  Vm = − + ⋅μ p Eb g .  
 
 There is the work Wpol required to form the induced dipole against the internal forces of 

the molecule.  For an infinitesimal change in the induced moment, dp, this work is  
 
  d W dpol = ⋅E p.  
 
 The total work is obtained as 
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 where we used ′ = ′p Eα .   The prime denotes the induced polarization and field for the 

stage of the (reversible) process. 
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 We want to work out the induction energy corresponding to a field from a permanent 
dipole that falls on the atom of interest whose polarizability is α. The field E that induces 
the dipole in the atom is from a permanent dipole. Consider the potential φ that a dipole 
sets up at point P (We will get the field E that corresponds to this potential): 
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 Expand in powers of d1/r, d2/r. 
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 The field is given by E = −∇φ . The magnitude of the field is 
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 Working this out: 
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3. Dispersion Energy — This is an essentially quantum phenomenon.  Roughly speaking, 
the fluctuating dipoles from the charge distributions of the molecules are correlated.   

 (N.B. - this interaction exists for atoms and nonpolar molecules.) See any QM text for a 
derivation based on second order time independent perturbation theory. 
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  C6 < 0.  (For molecules in their ground electronic state). 
 
 Based on an oscillator model for each molecule, a simple approximation is 
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(Note that α ≈ ≈e k e r Eeff I
2 2 2 , where reff is an effective distance for the electrons. 

Thus, C E EI I6
2 1≈ ≈α , as one might expect.)  

 
For most molecules U U Udisp el ind>> , .  

 
But H2O is an important exception — here, Uel 
dominates. 
 
   
 
 
 
 

 
Data from: Hirschfelder, J.O., Curtiss, C.F. and Bird, R.B. "Molecular Theory of Gases and 
Liquids," John Wiley, New York, 1954, 1964. (A superb book on intermolecular forces). 
 

C6 (10–60 erg cm6 ) 
 
molecule electrostatic dispersion induction 
CO 0.003 67 0.06 
HI 0.35 382 1.7 
H20 190. 47 10.0 
 
Putting this together for atoms, use a Lennard-Jones (LJ) potential, 
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where σ = 2-1/6 rm.  ~.9rm   ε ~ 100-200 K,  σ ~ 3-4 Å. The first term’s form is not fundamental. 
It actually is more exponential – but this form is historical and captures the basic features. 
The attractive part is from the dispersion energy contribution.  The repulsion is a fit to the 
quantum chemical calculations for electron overlap effects.  (Other powers than 12 are 
sometimes used.) 
 
Many more flexible potentials have been proposed.  They are more flexible because they involve 
more (fitting) parameters. 
 
Non-spherical molecules — approaches: 
 
1. Could write the potential specific to an orientation.  But this would involve many functions. 

2. U r U r U r fn
n

n, , ,ω ω ω ω1 2 0
1

1 2b g b g b g b g= +
=

∞

∑  

 ω1, ω2: give the orientation in space of molecules 1 and 2. 
 fn: some angular basis functions (spherical harmonics) 
 Un(r): coefficients that only depend on r. 
 
In principle, this expansion is exact, but need rapid convergence of the series, which may not 
occur. 
 
3. Site-Site approach.  It is the one most popular for 
simulations.  Decompose the energy for a molecular 
pair into a sum of site-site interactions.  (The sites often 
coincide with the atomic nuclei, but they do not have to)  
The site-site interactions are central (only depend on 
distance between the sites). 
 
 
 Example: U r u r, ,ω ω αβ

αβ
1 2b g d i= ∑   

rαβ  is the separation of atom α in molecule 1and atom β  in molecule 2. 
 
Use, e. g., LJ for u(rαβ) 
 
 For N2-N2, there are 4 such atom-atom terms. 
 For CH4-CH4, there are 25 such atom-atom terms. 
 
 This will become impractical for a ‘large’ molecule. 
 
Use ‘fused’ atom approaches; e. g., CH3OH (methanol) 
fuse CH3 unit to one ‘effective’ atom (site). 
 
Can put point dipoles/quads on sites too 
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Electrostatic (Charge) Interactions (for Molecules) 
 
In order to model the interactions as electrostatic, we need to first discuss why an electrostatic 
picture of a molecule is appropriate.  By electrostatic, we mean that the molecule can be 
described as a classical distribution of charge.  A molecule is a quantum object, but, an 
implication of the Born-Oppenheimer approximation is that a molecule in a definite electronic 
state does act like a classical charge distribution.  This may be best appreciated from the 
Hellmann-Feynman theorem [Hellman “Einfuhrung in der Quantumchemie,” 1937; Feynman, 
Phys. Rev. 56, 340 (1939)] 
This states that 
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where kψ  is an exact eigenfunction of the system in 
state k, Ek its corresponding energy, and λ a 
parameter. 
 
Ιf we take λ = RAB, the separation between two 

molecules, then k
AB

AB

E f
R

∂
∂
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two molecules.  And Ek(RAB) follows by integration. 
 
We will apply this to the BO energy [cf. ‘Quantum Chemistry,’ I. Levine, Vol. I, Sec. 14.5] 
 
 �T V Uel el el+ =d iψ ψ  

 
where V = Vel + VNN and U = U(RN), the BO potential energy surface. 
 
The Electrostatic theorem, (the Helmann-Feynman theorem applied to ∂ ∂ μU R/ ) with Rμ a 

nuclear coordinate for the μth nucleus in molecule A, reads: 
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where γ ρ δν

νε
νB B

B
Z= − + −∑r r Rb g b g  

ρB(r) is the electronic density of molecule B obtained by a Q. M. calculation.  The second term 
arises from the nuclear charges.  The nucleus μ in molecule A feels a force Fμ arising from all 
the nuclei in molecule B, and from the electronic density in B.   
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Then, the interaction energy between those two charge distributions is given from electrostatics 
as 
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(This is just a fancy form of Coulomb’s law - appropriate to continuous charge distributions) 
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It is an integral version of Poisson’s equation, 
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φA is the potential set up by molecule A at r2.  γB is the charge distribution of molecule B. 
   
 
Now, it is very lengthy, as a practical matter, to have to integrate over a charge distribution.  So, 
what is done is to replace γA and γB by a distribution of point charges that will lead to the same 
result as Ees. 
 
Thus, we simplify Ees to Ues as 
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where ~Rαβ  is distance between charge site α and charge site β on molecule A and B, 
respectively.  The charges qα are not the same as the atomic charges Zμ. The charge locations 
~Rα  are not the same as the nuclear sites Rμ.  
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Therefore, as a model for the intermolecular potential, we write 
 
 U = ULJ + Ues. 
How to know which charge values and locations to pick? Certainly sounds non-trivial but there 
are two general procedures. Also, the multipole expansion idea tells you that the details of a 
charge distribution “disappear” the further you get from the charge distribution. 
(FIX FIGURE distance designations wrong.) 

 

 Write ~R R r rαβ α β= + + . 

 R is the vector between the centers of the 

charge distributions.  Expand 1 ~Rαβ  in powers of 

1 R , as on page 2. 
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corresponding to charge-charge, charge-dipole, dipole-dipole, . . . , interactions.  This is the 
multipole expansion (in inverse powers of R). 
 
Note that since all we can measure are the multipolar moments:  C, μ, Q , etc., if we pick the 
charges {qα} to fit known data, then we have done as well as we can. 
 
Or, pick the {qα} to fit the results of full-blown ab initio quantum chemical calculations in the 
sense of successfully reproducing, e. g., the potential surfaces for the interaction between a 
dimers, the dimerization energy, the geometry, etc. The RESP procedure used in AMBER does 
this. Gaussian has Merz-Kollman method to fit ab initio charge distributions to point charges. 
See e.g. Kollman et al. J. Phys. Chem. 97, 10269 (1993) for methods developments. 
 
Using these charges to define the electrostatic part of the potential along with the LJ parts 
defines the force field.  
 
Then, consider statistical mechanical properties:  Heat capacity, heat of vaporization, radial 
distribution functions, hydrogen bond analysis (if appropriate), self-diffusion coefficients, NMR 
relaxation times, orientational correlation functions. 



 9

TIPS (Transferable Intermolecular Potentials)  
 
Want parameters of the intermolecular potential that can be transferred from, e.g., methanol to 
ethanol, to . . . 
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Note: this introduces parameters Aα (Bβ) and Cα (Cβ) specific to the two interacting atoms. i.e., 
not e.g. C rαβ αβ

6  that is dependent on a particular pair of sites, αβ. See Jorgensen JACS  103, 

335-350-(1981). 
 
Sometimes, use Lorentz-Berthelot combining rules (see McQuarrie, Statistical Mechanics): 
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In order to do methanol, aggregate CH3 into a united atom 3-site model, as above.   
 
Rigid object; no vibrational motion.  This assumption permits bigger MD time steps, as we don’t 
have to worry about the fast vibrational time scale. 
 
Geometry from: gas phase values 
   liquid phase values 
 
Dipole moment enhanced due to dispersion forces (see below for a discussion). 
 
Charges do not have to be on the atomic sites.  For example, a quadrupole model for Nitrogen is 
as follows: (See Allen &Tildesely Nitrogen model) 
 
The charges and distances are chosen to give the correct Nitrogen quadrupole moment 
Q q r= ∑ α α

2  
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A lot of force-field development deals with the intramolecular part of the potential.   
 
Fit quantum chemistry data on: vibrational frequencies, dipole moments, derivatives of the 
energy... 
 
There is a great deal of freedom (for better of worse) in designing an internal force field. To see 
some of the problems consider water. 
 
For water, a harmonic approximation would give (3N-6=3 internal degrees of freedom) 
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   Would be 4 force constants  
   Only 3(3) – 6 = 3 vibrational frequencies observed experimentally. 
 
Two approaches: 
 
1. “Physicists” central force field.   

Force constant and square of internuclear separation 
 

  ( ) ( ) ( )2 2 21 1 1
2 2 2HO HO HO H O HH H HV k r k r k rδ δ δ′ ′≈ + +  

 
 Two constants, ,HO HHk k  
 
2. “Chemists” valence-bond force field. 

Use bond lengths and bond angles 
 

  ( ) ( ) ( )2 2 21 1 1
2 2 2HO HO HO H O aV k r k r kδ δ δα′= + +  

 
  0δα θ θ= −     0θ  is equilibrium angle. 
 
 Two constants, ,HOk kα  
 

 (Last term often written as ( )2
0

1
2

k rα δα′ , with r0 a length to make kα′  have same units as 

stretch.) 
 
Neither approach is completely satisfactory, but valence-bond seems better than central. 
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Can add terms, when data available; e. g., 
 

 ( ),
1
2 HO HO H Ok r rα δα δ δα δ ′+  

 
bond stretching-angle bending interaction. 
 
MD programs adopt the valence-bond approach. 
 
(ALL Force Fields ARE A COMPROMISE BETWEEN SPECIFICITY AND GENERALITY) 
 
A typical force field will have terms schematized as follows: 
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Polarizable Liquids 
 
Nonadditivity of the intermolecular potential is a consequence of the electronic polarizability (α) 
of atoms and molecules. Consider the following: The gas phase dipole moment of water is about 
1.8 D; in liquid water, the experimental dipole moment is about 2.4 D. Why? In the liquid, the 
total dipole moment is μ + p , the sum of the permanent moment μ, plus the averaged induced 
moment.  
 
Nonadditivity from polarization is particularly important when dealing with nonuniform systems. 
For example, around an ion. 
 
The induced dipole on the ith site in a particular 
molecule is  
 
 p Ei i i= α  

where the field falling on this site is Ei. 
 
The equations for these fields are: 
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where the field on the ith site from the charges at the qj sites in the other molecules is 
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The induced-dipole-induced-dipole interaction tensor between the ij sites is (this form is just 
another way of writing what we wrote in terms of angles before.) 

 T r r r r rij
ij

ij ij ij ij ij
r

= − =
1
3 1 � � �  

The polarization energy from these induced dipoles then is (see Section I) (remember, it was the 
moment induced by a dipole field) 

 U pol i i
i

N
= − ⋅

=
∑1

2
0

1
p E  

Solve this scheme either by matrix inversion or by iteration to self-consistency. That is, given a 
configuration of molecules, solve the above linear equations for the pi.  
From these pi evaluate Upol.  
 
For water, if such a scheme is pursued, with the gas phase polarizibility of the water molecule 
approximated by using its value on the oxygen site, then the average total dipole moment per 
molecule is about 2.4 D.  
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Diffusion Coefficient 
 
Tagged particle (tracer) 
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 means add up over many trajectories and divide by number of such 

trajectories. 
 
So for 256 Argon atoms, it is easy to do this.  Add the independent records. 
 
 For one atom, you get  Averaging over 256 atoms you get 
 

 
 
 
 
 
 
 
 

 


