ASTELTOXIN

By: Milad Sedarpour Vajargahy

Teacher: Prof. Maleczka
CEM852

Introduction

- ☐ The toxic maize cultures of Aspergillus stellatus contain a mycotoxin that exerts a potent inhibitory effect on the adenosinetri phosphatase activity of Escherichia coli BF1.
- ☐ This mycotoxin was isolated by Vleggaar et al. in the late 1970s and was given the name asteltoxin.
- ☐ On the basis of spectroscopic data and an X ray crystallographic analysis, these investigators were able to establish that structure and relative stereochemistry of asteltoxin.
- \square Asteltoxin is a trienic α -pyrone that bears a close structural relationship to aurovertin and citreoviridin, known inhibitors of oxidative phosphorylation.

- ☐ The asteltoxin molecule is highly oxygenated and complex; its dioxabicyclo[3.3.0]octane frame is distinguished by six contiguous stereogenic centers.
- ☐ Interestingly, it has been demonstrated that this highly oxygenated bicyclic substructure is responsible for the inhibition and binding properties of asteltoxin.

Representative [2+2] Photocycloaddition Reactions

Paterno-Buchi Reaction Mechanism

Paterno-Buchi Reaction as a Photochemical Aldol Equivalent:

Stereoselective Functionalizations of Furan-Aldehyde Photoadducts:

Stereoselective Functionalizations of Furan-Aldehyde Photoadducts:

Retrosynthetic Analysis of Asteltoxin:

Retrosynthetic Analysis of 3:

Retrosynthetic Analysis of 4:

Retrosynthetic Analysis of 2:

Synthesis of Intermediate 9:

Synthesis of Intermediate 9:

Synthesis of Intermediates 2:

Synthesis of Intermediates 5 (b), and 4 (c):

b)

OH

PhSCI, -78 °C

PhSCI, -50
$$\rightarrow$$
 0 °C

C)

Me

1. MeI, K₂CO₃, (CH₃)₂CO

Me

2. NaNH₂ (excess)

NH₃, Et₂O, CO₂

8: 2,4 pentanedione

[2,3] sigmatropic rearrangements

Fh

5: trans- 1-phenylsulfinylmethyl

-1, 3-butadiene

O

CO₂H

1. Im₂CO, THF

2. Me₂SO₄, K₂CO₃

(CH₃)₂CO

Me

4

Synthesis of Intermediate 28:

Synthesis of Intermediate 28:

Synthesis of (\pm) -Asteltoxin:

Conclusion:	
☐ Since its discovery in 1909, the process now known as the Paterno-Büchi reaction has evolved into a powerful to for the elaboration of highly oxygenated and stereochemically complex molecules.	ol
☐ The relationship of the Paterno-Büchi reaction to the classic aldol condensation is particularly interesting. In certa circumstances, it can provide access to p-hydroxy carbonyl compounds that could not be efficiently prepare through a direct aldol condensation.	
☐ Schreiber and his colleagues dramatically extended the utility of furan-aldehyde Pateno- Büchi reactions for the synthesis of complex natural products.	he
☐ The photo-induced union of simple, achiral furans and aldehydes furnishes a dioxabicyclo [3.2.0]hepter photoadduct that can serve as a valuable template for the creation of stereogenic centers.	ne
☐ The folded or cup-shaped molecular frameworks of these photoadducts are distinguished by a convex face and considerably more hindered concave face that permit highly diastereoselective operations to be carried out on the remaining site of unsaturation.	
☐ The most impressive feature of Schreiber's synthesis of asteltoxin is the speed with which vicinal stereochemic	al

relationships are secured, in short order, through a sequence of reactions in which the furan aldehyde Paterno-Büchi

photocycloaddition plays a commanding role.

THANK YOU FOR YOUR ATTENTION