Cem 484: Molecular Thermodynamics

- Prof. Liddick
- Office: NSCL 1006
- Email: <u>liddick@chemistry.msu.edu</u>
- Office hours:
 - Tues. 8 9:30 am
 - o Wed. 1:30 − 3:00 pm

TAs and office hour

TAs

- Jared Hansen
- o Zhongqi Jin

Recitations

- Sec 1, Rm. 110 Thurs. 10:20 am 11:10 am, JH
- Sec 2, Rm. 109 Wed. 9:10 am 10:00 am, JH
- Sec 3, Rm. 109 Fri. 11:30 am 12:20 pm, ZJ
- Sec 4, Rm. 109 Fri. 9:10 am 10:00 am, ZJ

Grading scale

Final grade based on average of in-class exams	Avg.	Grade
	>85	4.0
Exams – 4 in-class exams	80 - 84.9	3.5
 All exams are cumulative Extra cradit quastions on each exam 	75 – 79.9	3.0
	65 – 74.9	2.5
and added to final score	60 - 64.9	2.0
Attendance (class and recitation)	55 – 59.9	1.5
is not mandatory – but can help	50 - 54.9	1.0
	<50	0.0

Syllabus

Webpage -

http://www2.chemistry.msu.edu/courses/cem484/index.html

Three main topics in cem 484

- Molecular spectroscopy
- Statistical Thermodynamics
- Thermodynamics
- Link between the concepts from introductory chemistry (macroscopic) and studies from cem 483 (microscopic)

Connections – simple gas molecules

Microscopic

 H_2

- Quantum mechanics
- Molecular Orbital diagrams

- Macroscopic
- Chemical Thermodynamics
- Gases characterized by P,V,T
- Heat capacities

- Want to know how to go between these two regimes
- Basis of modern chemistry

Connections – simple gas molecules

Microscopic

- H_2 atom
- What is the structure, nature of bonding and energy states?
- Verified with measurements
 - molecular spectroscopy

Macroscopic

- Chemical Thermodynamics
- Is a chemical reaction allowed?
- Where is the equilibrium?
- Does it release heat?
- How can it be manipulated?

Connections

Quantum Mechanics

- State of system is completely defined by its wavefunction,
- Physical observables replaced by operators
- Can only measure eigenvalues of operator
- Average value of an observable corresponds to operator
- Wavefunction of system can evolve in time

Thermodynamics

- Two bodies in thermal equilibrium are at the same temperature
- Conservation of energy
- No real process is reversible
- Entropy of a pure perfect substance at 0 K = 0.

Connections – simple gas molecules

Microscopic ■ H_{elec} + H_{vib} + H_{rot}

- UV/Vis spectroscopy
- IR spectroscopy

Microwave spectroscopy

Macroscopic

- Chemical predictions from thermodynamic state functions
 - ΔU_{sys} internal energy
 - ΔH_{sys} enthalpy
 - o ΔS_{sys} entropy
 - ΔA_{sys} helmoltz free energy
 - ΔG_{sys} gibbs free energy
- Measure / assign some and use reaction to predict remainder

Molecular Thermodynamics

