Nuclear Magnetic Resonance

NMR spectrum

NMR spectrum of 1,1,2 trichloroethane

Two different types of H

Signals from both alkanes are split

Integrals are in 2:1 ratio

Spin-spin coupling

- Spin-spin coupling responsible for multiple signals.
- For example, the single H atom experiences three different magnetic fields

Add a term to the Hamiltonian.

Wavefunction

- Distinguishable protons.
- Four different eigenstates for the nuclear Zeeman portion of Hamiltonian.

 Operate on the respective wavefunction with the Hamiltonian to determine state energies.

Energies (1)

Energies (3)

Spin-spin coupling

- Spin-spin hamiltonian
 - $\circ \quad \hat{H}_{ss} = hJ_{12}/hbar^{2*}I_1^*I_2$
 - J_{12} spin coupling constant
- Wavefunctions are not eigenstates of Ĥ_{ss} so they are treated using perturbation theory

Spin-spin coupling (1)

Spin-spin coupling (2)

Spin-spin coupling (3)

Spin-spin coupling

Energy level diagram with spin-spin coupling.

• Only four different transitions are allowed.

Indistinguishable protons

- Why do indistinguishable protons not show a splitting?
- Consider dichloromethane.

Need symmetric and antisymmetric wavefunctions

Indistinguishable protons (1)

Apply same Hamiltonian to the system

Indistinguishable protons (2)

Apply same Hamiltonian to the system

Indistinguishable protons (3)

Spin-spin coupling

Indistinguishable protons (4)

Spin-spin coupling