Nuclear Magnetic Resonance

Transition Moment Integral

- Probability of an excitation
- Hamiltonian \hat{H}_1 defined as

Selection Rules

- Selection rules developed using perturbation theory as before (rotations and vibrations)
- Assume field lies along each direction and determine excitation probability

Selection Rules

- Selection rules developed using perturbation theory as before (rotations and vibrations)
- Assume field lies along each direction and determine excitation probability

Ladder Operators

- a and b are eigenstates of I^2 and I_z but not I_x and I_y .
- Rewrite in terms of raising and lowering operators.

Redefine I_x.

Transition Moment Integral

Use ladder operator to evaluate integral.

Ladder operator results.

Transition Moment Integral

Evaluate integral.

Selection Rules

Shielding

- NMR spectroscopy is useful based on sensitivity to "local" chemical environment.
- Consider benzene molecule

Introduce the concept of a chemical shift

Chemical Shift

- Desire to compare data from machines with different magnetic fields.
- Calibrate spectra in ppm relative to standard reference
- Chemical shift scale

Chemical shift example

Chemical Shift

 Difference between chemical shifts is independent of field strength

NMR difference example

Representative Chemical Shifts

 Different types of chemical environments show different chemical shifts (Table 14.3 from book).

Compound	Proton	Example	d
Alkane	R_2CH_2	$(CH_3)_2CH_2$	1.2 – 1.4
Aromatic	ArH	Benzene	6.0 - 8.5
Chloroalkane	RCH ₂ CI	CH_3CH_2CI	3.4 – 3.8
Ether	ROCH₂R	CH ₃ OC <u>H</u> ₂ CH ₃	3.3 – 3.9