Nuclear Magnetic Resonance

Transition Moment Integral

Probability of an excitation

- Hamiltonian \hat{H}_{1} defined as

Selection Rules

- Selection rules developed using perturbation theory as before (rotations and vibrations)
- Assume field lies along each direction and determine excitation probability

Selection Rules

- Selection rules developed using perturbation theory as before (rotations and vibrations)
- Assume field lies along each direction and determine excitation probability

Ladder Operators

a and b are eigenstates of I^{2} and I_{z} but not I_{x} and I_{y}. Rewrite in terms of raising and lowering operators.

Redefine I_{x}.

Transition Moment Integral

Use ladder operator to evaluate integral.

Ladder operator results.

Transition Moment Integral

Evaluate integral.

- Selection Rules

Shielding

NMR spectroscopy is useful based on sensitivity to "local" chemical environment.

- Consider benzene molecule
- Introduce the concept of a chemical shift

Chemical Shift

- Desire to compare data from machines with different magnetic fields.
- Calibrate spectra in ppm relative to standard reference
- Chemical shift scale

Chemical shift example

Chemical Shift

Difference between chemical shifts is independent of field strength

NMR difference example

Representative Chemical Shifts

Different types of chemical environments show different chemical shifts (Table 14.3 from book).

Compound	Proton	Example	d
Alkane	$\mathrm{R}_{2} \mathrm{CH}_{2}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}$	$1.2-1.4$
Aromatic	ArH	Benzene	$6.0-8.5$
Chloroalkane	$\mathrm{RCH}_{2} \mathrm{Cl}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$	$3.4-3.8$
Ether	$\mathrm{ROCH}_{2} \mathrm{R}$	$\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{3}$	$3.3-3.9$

