
Nuclear Magnetic Resonance

Selection Rules

- Probe magnetic dipole moment of nuclei in molecules resulting from intrinsic spin angular momentum
- Simplest and most useful is ¹H.
- Study interaction of nuclear magnetic moment with applied magnetic field

CEM 484

Nuclear Zeeman interaction

Classical Mechanics

 Magnetic moment of a charged particle moving along a circular path

- Current of charged particle
- Magnetic moment
- Towards a nucleus

Angular Momentum

- Framework comes from the rigid rotator model
- ¹H has two state of angular momentum

Wavefunctions represented by spherical harmonics

Define the states

Hamiltonian

Eigenstates of angular momentum

Magnetic moment interacts with magnetic field

Proton in magnetic field

 Proton in magnetic field it interacts via Hamiltonian previously specified.

Energy level diagram

12

Proton in magnetic field

What is the frequency of the radiation necessary to drive the transition in an applied magnetic field of 7 Tesla?

Iclicker: Proton resonance

Using a 300 MHz NMR spectrometer to measure the ¹H spectrum of a variety of compounds you prepared the proton resonance occurs at precisely 300.000 MHz. What is the strength of the magnetic field in the NMR?

Iclicker: Other Nuclei

- Using the same NMR what frequency would be required to record a 13 C spectrum (g_N = 1.4042)?
 - A 75 MHz
 - B 85 MHz
 - C 95 MHz
 - D 105 MHz
 - E 115 MHz

Historical Perspective

Absorption as a function of applied magnetic field.