Electronic spectroscopy:

Electronic transitions

- UV/VIS transitions between discrete electronic states.
- Electrons promoted from ground state to excited state.

 Rotational and vibrational transitions accompany electronic transitions.

Energy level diagram

Vibronic transitions

Total energy need to include terms from al three transitions.

- Rotational and vibrational terms are comparatively small and not easily resolved.
- Ignoring rotations an expression for excitations between excited state

Vibronic transitions

- Electronic energy spectrum of I₂.
- Higher energy transitions become harder to resolve.
- Vibronic progression

Dissociation energy

D_o is dissociation energy.

Dissociation energies: Example

The fundamental line in the infrared spectrum of ${}^{12}C^{16}O$ occurs at 2143.0 cm⁻¹, and the first overtone is found at 4260 cm⁻¹. Calculate the values of v_e and v_ex_e for ${}^{12}C^{16}O$.

Iclicker: Disociation energies

- The energy difference between two arbitrary levels v and v+1 is
 - $\Delta G = \tilde{v}_e (1 2\tilde{x}_e(v + 1))$
- The dissociation energy can be written as
 - o $\tilde{D}_e = \tilde{v}_e (1-\tilde{x}_e^2)/4\tilde{x}_e \approx \tilde{v}_e/4\tilde{x}_e$
- Using the graph on right, estimate the dissociation energy for H₂.

Electronic excitation intensity pattern

- Intensity pattern of electronic transitions reveals molecular structure.
- Franck-Condon principle

Iclicker: Label the curve

- Label the energy curve with:
 - Vibration and rotational quantum numbers.
 - The zero point energy for the ground electronic state.
 - The fundamental vibrational frequency of the ground electronic state.
 - The first overtone of the second electronic state.
 - The dissociation energy of the second electronic state.
 - The P-branch transition from the J=1, v=0 level in the ground electronic state.
 - The R-branch transition from the J=1, v=0 level in the ground electronic state.