Chemical Thermodynamics

Examples

Consider a simple gas phase equilibrium

$$
\mathrm{N}_{2} \mathrm{O}_{4} \leftrightarrow 2 \mathrm{NO}_{2}
$$

What is K_{p} at equilibrium assuming that the gases are ideal and $\mathrm{T}=298 \mathrm{~K}$?

Examples

Consider a simple gas phase equilibrium

$$
\mathrm{N}_{2} \mathrm{O}_{4} \leftrightarrow 2 \mathrm{NO}_{2}
$$

- If one mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ is placed in a 10 L tank at 298 K how much of each species is present at equilibrium?

Examples

Consider a simple gas phase equilibrium

$$
\mathrm{N}_{2} \mathrm{O}_{4} \leftrightarrow 2 \mathrm{NO}_{2}
$$

- If one mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ is placed in a balloon such that the total pressure is always 1 bar at 298 K how much of each species is present at equilibrium?

Examples

Consider a simple gas phase equilibrium

$$
\mathrm{N}_{2} \mathrm{O}_{4} \leftrightarrow 2 \mathrm{NO}_{2}
$$

- If one mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ is placed in a balloon such that the total pressure is always 1 bar at 400 K how much of each species is present at equilibrium?

Examples

- Consider a hypothetical gas phase reaction

$$
\mathrm{A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \leftrightarrow \mathrm{C}(\mathrm{~g})
$$

- The reaction is conducted at constant temperature and the gases are ideal. The standard chemical potentials at 298 K of $\mathrm{C}(\mathrm{g}), \mathrm{A}(\mathrm{g})$, and $\mathrm{B}(\mathrm{g})$ are -12 $\mathrm{kJ} / \mathrm{mol},-3 \mathrm{~kJ} / \mathrm{mol}$, and $-4 \mathrm{~kJ} / \mathrm{mol}$, respectively. What is K_{p} for the reaction at 298 K ?

Examples

- Consider a hypothetical gas phase reaction

$$
A(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \leftrightarrow \mathrm{C}(\mathrm{~g})
$$

- The reaction is conducted at constant temperature and volume and the gases are ideal. The standard chemical potentials at 298 K of $\mathrm{C}(\mathrm{g}), \mathrm{A}(\mathrm{g})$, and $\mathrm{B}(\mathrm{g})$ are $-12 \mathrm{~kJ} / \mathrm{mol},-3 \mathrm{~kJ} / \mathrm{mol}$, and $-4 \mathrm{~kJ} / \mathrm{mol}$, respectively. What is the volume if 1 mole of each substance is present at equilibrium ?

