Chemical Thermodynamics

Example

Assume vapor pressure of the components in solution can be represented by

$$P_{1} = X_{1}P_{1}^{*}e^{\alpha X_{2}^{2}}$$

$$P_{2} = X_{2}P_{2}^{*}e^{\alpha X_{1}^{2}}$$

$$P_2 = X_2 P_2^* e^{\alpha X_1^2}$$

What is the relationship between α and β ?

Activities

Hide all non-ideal aspects in activity coefficient

Activities

For a dilute solution of solute j in solvent i:

Activities

- Common concentration units can be written in terms of activity.
- Molality

Molarity

Chemical Equilibrium

 For a generic chemical reaction, define the extent of reaction.

Look at Gibbs free energy as a function of reaction extent.

Chemical Equilibrium

 Derivative of Gibbs free energy relative to reaction extent can help define the location of equilibrium.

Chemical Equilibrium

Continued

Results in the equilibrium constant, K.