Chemical Thermodynamics

ΔG

Chemical potential

At equilibrium chemical potentials are equivalent.

Clapeyron Equation

Liquid-gas equilibrium

Applies to all three equilibrium lines in phase diagram.

Example liquid-solid

Given that $\rho_{CO2}^{I} = 0.78 \text{ g/mL}$ and $\rho_{CO2}^{S} = 1.53 \text{ g/mL}$. What is the temperature of the solid – liquid equilibrium at 100 bar pressures. $\Delta_{fus}H = 8.33$ kJ/mol

Example liquid-solid

Given that $\rho_{CO2}^{I} = 0.78 \text{ g/mL}$ and $\rho_{CO2}^{S} = 1.53 \text{ g/mL}$. What is the temperature of the solid – liquid equilibrium at 100 bar pressures. $\Delta_{fus}H = 8.33$ kJ/mol.

Solid-liquid equilibrium line is nearly vertical

Example solid-gas

For the solid-gas equilibrium at 1 bar what is the temperature of dry ice in equilibrium with its vapor.

Example solid-gas

For the solid-gas equilibrium at 1 bar what is the temperature of dry ice in equilibrium with its vapor.

Results in Clausius Clapeyron equation

Example liquid-gas

For the liquid-gas the same assumptions can be made.

If the triple point is known, $\Delta_{vap}H$, $\Delta_{fus}H$, ρ_s , and ρ_l the phase diagram can be calculated

Iclicker

The vapor pressure (in Pa) for solid and liquid UF6 are given by:

$$\ln P_s = 29.411 - 5893.5/T$$
$$\ln P_l = 22.254 - 3479.9/T$$

- What is the pressure of the triple point (units of kPa)?
 - $\circ \quad \mathsf{A} \mathsf{P} < \mathsf{0}$
 - \circ B P = between 0 and 45
 - \circ C P = between 45 and 95
 - D P = between 95 and 145
 - E P > 145

Chemical potential

Calculate chemical potential at other T and P.