Chemical Thermodynamics

$\Delta_{\rm r} \overline{\rm H}^{\rm O}_{\rm T}$

- $\Delta_r \overline{H}^0_T$ can be measured from calorimetry.
- However, isn't always possible to isolate the reaction of interest and study it cleanly.
- Consider the creation of CO₂(g)

Hess's Law

• Calculate $\Delta_r \overline{H}^0_T$ using a fictitious chemical path.

Enthalpies of formation

In practice, enthalpies are tabulated as enthalpies of formation, $\Delta_{\rm f}\overline{\rm H}^{\rm 0}_{\rm T}$.

Two cautions

• For a generic chemical reaction, $\Delta_r \overline{H}^0_T$.

Value is for chemical reaction as written

For a generic chemical reaction, $\Delta_r \overline{S}{}^0_T$.

Only technically correct at 298K and 1 bar pressure.

$\Delta_r \overline{G}^0_T$

• $\Delta_r \overline{G}{}^0_T$ has a direct temperature dependence

Often assume enthalpy and entropy are not temperature dependent.

How much heat is evolved when 50 g of CH₄(g) is burned at 298 K?

How much heat is evolved when 50 g of CH₄(g) is burned at 2000 K?

- How much heat is evolved when 50 g of CH₄(g) is burned at 2000 K?
- Consider the temperature dependence of the heat capacities.

- How much heat is evolved when 50 g of CH₄(g) is burned at 2000 K?
- Consider the temperature dependence of the heat capacities.

Species	a (J/Kmol)	b (J/K²mol)	c (J/K³mol)	ν
CO ₂ (g)				
$H_2O(g)$				
O ₂ (g)				
CH ₄ (g)				
Δ				

- How much heat is evolved when 50 g of CH₄(g) is burned at 2000 K?
- Continuing...