Chemical Thermodynamics

Problem

- Calculate the change in enthalpy for the isothermal compression of 5 moles of chloromethane, $\mathrm{CH}_{3} \mathrm{Cl}$, at 300 K from an initial pressure of 0.5 bar to 40.0 bar. The $\mathrm{CH}_{3} \mathrm{Cl}$ can be described by the following equation of state

$$
Z=\frac{P \bar{V}}{R T}=1+\left(b-\frac{a}{R T}\right) \frac{P}{R T}
$$

- $A=7.57 \mathrm{~L}^{2} \mathrm{bar} / \mathrm{mol}^{2}, \mathrm{~b}=0.065 \mathrm{~L} / \mathrm{mol}, \mathrm{C}_{\mathrm{p}}=40.7$ $\mathrm{J} / \mathrm{Kmol}$

Heat Engines

Use some of energy in heat flow to perform work

Cyclic Engines

For an integral number of cyclic processes

- For a heat engine
- Define a maximum efficiency

Refrigerator

A heat engine running in reverse.

Refrigerators compared based on COP coefficient of performance

Carnot cycle

An ideal engine that obtains maximum efficiency is one that follows the Carnot cycle.

Carnot cycle

A four step cycle with all steps being reversible

- Isothermal, reversible expansion
- Adiabatic, reversible expansion
- Isothermal, reversible compression
- Adiabatic, reversible compression

Problem

A household runs between 35 oC and -10 oC. How many Joules of heat can be removed, in principle, per one 1 kWh of work?

Problem

The refrigerator in the previous problem is charged with $\mathrm{NH}_{3}(\mathrm{~g})$ If the gas is initially at 308 K and $\mathrm{Vo}=$ $1.2 \mathrm{~L} / \mathrm{mol}$ what will the molar volume be after an adiabatic reversible expansion to 263 K. Use vdW expression, $\mathrm{a}=4.3 \mathrm{~L}^{2} \mathrm{bar} / \mathrm{mol}^{2}, \mathrm{~b}=0.038 \mathrm{~L} / \mathrm{mol}, \mathrm{Cp}$ $=27.2 \mathrm{~J} / \mathrm{Kmol}$

