Chemical Thermodynamics

State Functions

Table of differential functions

State Function	Differential	Significance	path
U			
Н			
G			
Α			

Maxwell relations

 Since each of the state functions are exact more relationships can be derived.

State Function	Differential	Maxwell
U		
Н		
G		
Α		

Calculate DU for the expansion of 1 mole of NH3 from $T_1 = 300 \text{ K}$, $V_1 = 0.30 \text{ L}$ to $T_2 = 200 \text{ K}$, $V_2 = 0.60 \text{ L}$. Assume van der Waals behavior.

- Four step process
 - o 1.
 - o 2.
 - o 3.
 - 0 4.

Continue using the van der Waals equation

• What is ΔS for the same process?

• What is ΔS for the same process?

What about ∆H?