Chemical Thermodynamics

Iclicker

For an isothermal compression of an ideal gas, what is the change in internal energy, DU.

- A - positive
- B - negative
- C-0

Internal energy

Change in internal energy

Need to distinguish between exact and inexact differentials

Internal energy

Internal energy change for reversible expansion of an ideal gas
Start at

\circ	$\mathrm{n}=1 \mathrm{~mol}$	$\mathrm{n}=1 \mathrm{~mol}$
\circ	$\mathrm{~T}_{1}=300 \mathrm{~K}$	$\mathrm{~T}_{2}=200 \mathrm{~K}$
\circ	$\mathrm{~V}_{1}=10.0 \mathrm{~L}$	$\mathrm{~V}_{2}=20.0 \mathrm{~L}$
\circ	$\mathrm{P}_{1}=2.5$ bar	$\mathrm{P}_{2}=0.83$ bar

Change along a specified path

Internal energy

Determine w

- To get q need to evaluate $\Delta \mathrm{U}$

Exact vs. Inexact

Mathematical definition.

Exact vs. Inexact

Application to simple case - volume

Internal Energy

- Change in internal energy is a function of temperature and volume.
$(d \mathrm{U} / \mathrm{dT})_{\mathrm{V}}$
$(d \mathrm{U} / \mathrm{N})_{\mathrm{T}}$

