Molecular Spectroscopy:

Molecular Spectroscopy

How are some molecular parameters determined?

- What are the practical applications of spectroscopic knowledge?
- Can molecules (or components thereof) be identified based on differences in energy levels?

Molecular Spectroscopy

	ΔE	ν,λ	Selection rule
Electronic	10 ⁻¹⁸ – 10 ⁻¹⁹ J	UV/VIS 200 – 800 nm	Franck-Condon overlap
Vibration	10 ⁻²⁰ – 10 ⁻²¹ J	IR 0.2 – 4 μm	$\Delta v = \pm 1$
Rotation	10 ⁻²³ – 10 ⁻²⁴ J	Microwave 3mm – 10 cm	$\Delta J = \pm 1$

Molecular Spectroscopy

 Quantum mechanics developed to overcome shortcomings in classical physics

source

Power

Electronic excitation of H₂

 $\circ \quad \mathsf{H}_2 \to \mathsf{H}_2^* \to \mathsf{H}_2 + \mathsf{h}_{\mathsf{V}}$

 Probe energy levels of a molecule using electromagnetic radiation

General Spectrometer

 Monochrometer selects specific wavelength

- Bohr frequency must be satisfied
- Different types of spectrometers to probe different "types" of states

Molecular Spectroscopy

Bohr frequency condition

- Energy absorbed or emitted is the result of transitions between discrete energy states.
- Bohr frequency condition
- h is Planks constant

Electronic Spectroscopy

Excitations between electronic states – CO molecule.

Energy of transition

Iclicker: Beta carotene

 Beta carotene absorbs strongly in visible wavelengths. Assume the electronic states can be represented by a simple particle-ina-box with energy levels of:

If the absorption can be represented by a transition between the 11 and 12 electronic energy state and the molecule is roughly 18.3 A long determine the wavelength of the absorption.

Vibrational spectroscopy

- Quantized vibrational states.
- Modeled with harmonic oscillator.
- Energy levels

Ground state is n=0 state

Vibrational spectroscopy

 Energy difference between adjacent states

For CO, the n=0 to n=1 transition is at 2143 cm⁻¹.

Iclicker: CO vibration

What is bond force constant in CO molecule?

Rotational Spectroscopy

Rigid rotor approximation

Energy levels of a rigid rotator

g_i – degeneracy of levels

Rotational Spectroscopy

Assuming a simple rigid rotor, B for ${}^{12}C{}^{16}O$ is 57.65 GHz. Sketch the absorption spectrum if the first three rotational transitions are observed $(0 \rightarrow 1, 1 \rightarrow 2, \text{ and } 2 \rightarrow 3)$

Iclicker: ¹²C¹⁶O

- The pure rotational spectrum of ¹²C¹⁶O has two adjacent transitions at 3.863 and 7.725 cm-1. Calculate the internuclear distance
 - A 56.5 pm
 - o B 113 pm
 - o C 226 pm
 - o D 452 pm
 - E 904 pm

Iclicker: ¹³C¹⁶O

- What is the transition frequency for the J = 0 \rightarrow 1 transition of ¹³C¹⁶O assuming the same internuclear spacing as ¹²C¹⁶O?
 - A 101.1 GHz
 - o B 104.3 GHz
 - o C 107.5 GHz
 - o D 110.4 GHz
 - E 112.6 GHz

Selection Rules

- Energy separation determines needed frequency range.
- Available transitions determined by quantum mechanics summarized in selection rules.

All together

- Energy levels that have been discussed in isolation are all available in spectroscopy studies.
- Electronic spectra contain virbational and rotational excitations, vibrational spectra contain information on rotational levels, ...

