

13.1. (a) $T = 100 * 10^{-0.038} = 91.62\%$

(b) $T = 11.01\%$

(c) $T = 39.9\%$

(d) $T = 57.41\%$

(e) $T = 36.73\%$

(f) $T = 20.32\%$

13.5.

$$c = \frac{6.23 \text{ mg KMnO}_4 * 10^{-3} \text{ g}}{L} * \frac{1 \text{ mol}}{158.03 \text{ g KMnO}_4} = 3.943 \times 10^{-5} \text{ M KMnO}_4$$

$$A = -\log(0.195) = 0.71$$

$$\varepsilon = \frac{A}{bC} = \frac{0.71}{1.00 * 3.943 \times 10^{-5} \text{ M}} = 1.88 \times 10^4 \text{ L/mol-cm}$$

13.8. (a) $A_1 = \varepsilon b c = 7.00 \times 10^3 * 1.00 * 3.49 \times 10^{-5} = 0.2443$

(b) $A_2 = \varepsilon b c = 7.00 \times 10^3 * 2.50 * 1.745 \times 10^{-5} = 0.3054$

(c) $T_1 = 10^{-0.2443} = 0.596, T_2 = 10^{-0.3054} = 0.495$

(d) $A = -\log(0.596/2) = 0.526$

13.9. $e = 7000 \text{ L/mol-cm}$

$$c_{\text{Fe}} = (7.9 \text{ mg Fe/L}) * (1 \text{ g/1000 mg}) * (1 \text{ mol Fe/55.8 g}) * (2.50 \text{ mL/50.0 mL}) = 7.08 \times 10^{-6} \text{ M}$$

$$A = 7000 * 2.50 * 7.08 \times 10^{-6} = 0.1239$$

13.15. (a) $T = 256 \text{ mV/498 mV} = 0.514 \quad A = -\log T = -\log(0.514) = 0.289$

(b) $A = 0.289/2 = 0.1445 \quad T = 10^{(-0.1445)} = 0.717$

(c) $A = 2 * 0.289 = 0.578 \quad T = 10^{(-0.578)} = 0.264$

14.1 Allow "s" indicate the standard and "x" the unknown. V_t is the total volume of the solution.

$$A_x = \varepsilon b c_x V_x / V_t$$

$$A_s = \varepsilon b (c_x V_x + c_s V_s) / V_t$$

$$c_x = \frac{A_x c_s V_s}{(A_s - A_x) V_x} = \frac{0.656 * 25.7 * 10.0}{(.976 - 0.656) * 25.0} = 21.1 \text{ ppm}$$

14.2.

$$A_x = \epsilon b c_x V_x / V_t$$

$$A_s = \epsilon b (c_x V_x + c_s V_s) / V_t$$

$$c_x = \frac{A_x c_s V_s}{(A_s - A_x) V_x} = \frac{0.723 * 2.75 * 1.0}{(0.9170 - 0.723) * 5.0} = 2.05 \text{ ppm}$$

And converting from ppm to grams:

$$\frac{2.05 \text{ mg}}{L} * \frac{1 \text{ g}}{1000 \text{ mg}} * 200 \text{ L} = 4.1 \times 10^{-4} \text{ g}$$

Solving for percentage of sample:

$$4.1 \times 10^{-4} \text{ g} / 0.5990 \text{ g} * 100\% = 0.068\%$$

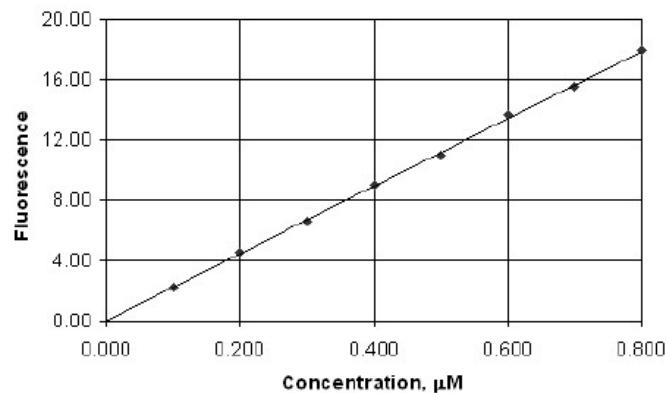
14.8 (a) $A_{365} = 0.426 = 3529 * 1.00 * c_{Co} + 3228 * 1.00 * c_{Ni}$
 $A_{700} = 0.026 = 428.9 * 1.00 * c_{Co} + 10.2 * 1.00 * c_{Ni}$

$$c_{Co} = (0.026 - 10.2 * c_{Ni}) / 428.9 = 6.06 \times 10^{-5} - 2.378 \times 10^{-2} * c_{Ni}$$

$$0.426 = 3529(6.06 \times 10^{-5} - 2.378 \times 10^{-2} * c_{Ni}) + 3228 * c_{Ni} = 0.2138 - 83.9 * c_{Ni} + 3228 * c_{Ni}$$

$$c_{Ni} = 6.41 \times 10^{-5} \text{ M}$$

$$c_{Co} = 5.9 \times 10^{-5} \text{ M}$$


(b) Solving similarly, $c_{Co} = 1.88 \times 10^{-4} \text{ M}$ and $c_{Ni} = 3.99 \times 10^{-5} \text{ M}$

15.1. In a fluorescence emission spectrum the exciting wavelength is held constant and the emission intensity is measured as a function of wavelength. In an excitation spectrum the emission intensity is monitored at one wavelength while the excitation wavelength is varied. The excitation spectrum should closely match the absorption spectrum because emission intensity in most cases is proportional to the amount of light absorbed.

15.3. For spectrofluorometry the analytical signal F is given by $F = 2.303 K' \epsilon c P_0$. The magnitude of F and thus the sensitivity can be enhanced by increasing the source intensity P_0 or the transducer sensitivity.

15.7

	A	B	C	D	E	F	G	H	I
1	Determination of NADH								
2	Part (a)								
3	Concentration in μM	Fluorescence							
4	0.100	2.24							
5	0.200	4.52							
6	0.300	6.63							
7	0.400	9.01							
8	0.500	10.94							
9	0.600	13.71							
10	0.700	15.49							
11	0.800	17.91							
12	unknown	12.16							
13	Part (b)								
14	Regression equation								
15	Slope	22.3464							
16	Intercept	3.671E-04							
17	Concentration of unknown	0.544							
18	Parts (c), (d), (e), and (f)								
19	Error Analysis								
20	s_r (standard error in y)	0.175							
21	N	8							
22	S_{xx}	0.42							
23	S_m	0.27							
24	y bar (average fluorescence)	10.056							
25	M for part (e)	1							
26	M for part (f)	3							
27	Standard deviation in c for part (e)	0.008							
28	RSD in c for part (e)	0.015							
29	Standard deviation in c for part (f)	0.005							
30	RSD in c for part (f)	0.010							
31	Spreadsheet Documentation								
32	Cell B15= =SLOPE(B4:B11,A4:A11)	Cell B24 =AVERAGE(B4:B11)							
33	Cell B16=INTERCEPT(B4:B11,A4:A11)	Cell B25= Replicates part (e) (entry)							
34	Cell B17=(B12-B16)/B15	Cell B26=Replicates part (f)							
35	Cell B20=STEYX(B4:B11,A4:A11)	Cell B27 =B20/B15*SQRT(1/B25+1/B21+((B12-B24)^2)/(B15^2)*B22))							
36	Cell B21=COUNT(B4:B11)	Cell B28=B27/B17							
37	Cell B22=B21^2/ARP(A4:A11)	Cell B29=B20/B15*SQRT(1/B26+1/B21+((B12-B24)^2)/(B15^2)*B22))							
38	Cell B23=SQRT(B20^2/B22)	Cell B30=B29/B17							
...									

