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22.1 - Introduction 
When we make an instrumental measurement, we want the measurement to be “correct.”  So 
it makes sense for us to start this discussion with a look at what the word “correct” means to a 
scientist.  When we make a measurement, there is a fundamental limit to how well we can 
“know” the answer1.  Therefore a real measurement cannot have a single “true” value and to 
be complete, must be accompanied by a statement of the uncertainty in the number.  In order 
for a scientific measurement to be “correct” it must represent the best estimate of the mean of 
a set of replicate measurements and be accompanied by an estimate of the uncertainty in the 
mean (i.e. error).  For example you might see a reported mass as 2.15 ±0.01 grams.  The typical 
interpretation of this reported value would be that our best estimate of the “true” value is 2.15 
grams and the standard deviation of the mean lies in the range of 0.01 above and below the 
value of 2.15.  Unfortunately the interpretation of the ±0.01 is not consistent throughout all 
disciplines of science.  Although we have stated here that the ±0.01 typically represents 
standard deviation, it is possible that the ±0.01 represents the standard error or the confidence 
interval2.  It is a best practice to always include a statement describing how you are reporting 
error in all of your scientific reports. 
 
22.2 - Types of Error 
“Nature does not give up her secrets lightly3” and in the pursuit of 
nature’s secrets it is accepted that the first measurement will yield a false representation of the 
truth.  In other words, any single data point will inherently contain error4.  The word error 
comes from Latin and loosely translates as “wandering.”  For our purposes we define error as 
the difference between the experimentally obtained value and the true value.   Ironically, if we 
knew the true value, we would have no need to conduct the experiment in the first place.  This 
leads us to a philosophically important conclusion.  The goal of an experiment is to obtain a 
“true” measured value but since all measured data points contain error, we can never know 
with absolute certainty the true value of an experimentally obtained result.  All experimentally 
obtained results contain uncertainty.  Therefore, it is the analyst’s objective to minimize and 
quantify error. 
 
It is generally recognized that there are three broad categories of error; gross error,5 systematic 
error6 and random error.   
 
  

1 This implied by the Heisenberg Uncertainty Principle: Werner Heisenberg.  Z. Phys. 43 (3–4): 172–198. 1927 
2 We will define standard error and confidence limits later in this chapter. 
3 Brian Greene, The Fabric of the Cosmos: Space,  Time, and the Texture of Reality, First Vintage Books (2004) 
4 We will use the terms uncertainty and error interchangeably.   
5 Also known as human error, operator error, or illegitimate error. 
6 Also known as bias.  

It is the analyst’s 
objective to minimize 
and quantify error. 
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Gross Error 
Gross error occurs when the analyst makes a mistake.  For example the analyst might misread a 
balance or strike the wrong button on his/her calculator.  These gross errors are often obvious.  
However not all mistakes are treated equal.  For example, if you were to make replicate 
measurements of the volume of your favorite coffee mug and you obtained a set of volumes 
such as 298 ml, 302 ml, 299 ml, 80.53 liters, 297 ml, 301 ml, 299ml, 295 ml, 301 ml and 270 ml, 
you would immediately recognize that the 80.53 liter measurement was completely WRONG.  
You obviously made a mistake!  The purist might say that you must keep the 80.53 liter data 
point until you can statistically justify the exclusion of that data point.  However in practice few 
analysts will keep a data point if it is completely obvious that a gross mistake was made.  But be 
careful.  Casually throwing out data points that you do not like is against best practices.  There 
are good reasons why the purist will always justify an exclusion using statistical tools.  Taking 
another look at our data you might also wonder about the 270 ml data point?  If you exclude 
the 80.53 liter data point AND the 270 ml data point you get an average value of 299 ml.  It 
would appear that the 270 ml data point is ≈ 30 ml “too low”.  You might be tempted to ignore 
that data point but again, this would be a violation of best practices and in this case it is not so 
obvious that the answer is WRONG.  Within the precision of your technique, the 270 ml data 
point might be legitimate.  For example, if you keep the 270 ml data point, you obtain an 
average of 295.7 ml and your original data set had a data point of 295 ml.  By casually throwing 
out the 270 ml data point, you may have artificially raised the mean of your data set.  You 
would first need to statistically justify the exclusion of the 270 ml data point before you could 
ignore it.  Data points that statistically fall outside the range of a data set are called outliers.  
We will explore the notion of outliers further in section 22.4 when we discuss Q-tests and 
Grubb’s-tests.   
 
Systematic Error 
Systematic error can be described as a measurement that is always too high or always too low, 
and the magnitude of the deviation from the “true” value is constant.  Systematic error is often 
difficult to identify.  The origin of systematic error can be chemical and/or instrumental in 
origin.  Instrumental systematic errors can result from drift noise7, external interference, or 
improper calibration of the instrument.  For instance an improper ground wire may result in a 
bias on the detector that artificially raises or lowers the instrument response to your 
measurement. Likewise, if your instrument’s critical components are not properly shielded, an 
external magnetic or radio frequency signal can cause your instrument’s response to shift from 
its original calibrated value.  Instrumental systematic errors are identified by analyzing carefully 
constructed standards on a regular basis.  For example, baseline drift is a common problem 
when conducting AAS analysis.  For this reason it is common for AAS methods to incorporate a 
blank and a known standard in the analysis after every 5 or 10 samples. 
 
Chemical systematic error occurs in many ways.  For instance any error in the construction of 
standards used to calibrate an instrument will necessarily impart a systematic error to the 
instrumental response.  Or a chemical systematic error might result from chemical steps used in 

7 See Chapter 5 for a review of noise sources. 
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Figure 22.1:  Three targets.  Target (a) 
has relatively high accuracy but 
relatively low precision.  Target (b) 
has relatively low accuracy but 
relatively high precision.  Target (c) 
has relatively high accuracy and 
relatively high precision. 

preparing the sample for analysis.  For example, it is common to esterify carboxylic acids prior 
to GC/MS analysis.  If the derivatization step had a yield of 85%, the analyst would need to 
correct for the 15% loss, otherwise there would be a negative systematic error of 15% in the 
final results.  Likewise you can imagine a similar loss of sample if there was an inefficient 
extraction step in the sample preparation. 
 
Random Error 
Random errors are unpredictable high and low 
fluctuations in the measurement of physical properties.  
These fluctuations can arise from environmental changes 
such as moment to moment fluctuations in pressure or 
temperature or are the result of slight variation in the 
procedural steps.  Fortunately, random error can be quantified using statistical tools.  Absent 
any gross or systematic error, if one repeats an experiment several times, the mean value of a 
normally distributed data set will appear close to the true value and the scatter about the mean 
can be used to quantify the confidence we have in that mean.  We will discuss each of these 
ideas in more detail later in this appendix. 
 
22.3 - Precision vs. Accuracy  
In the simplest case, accuracy is used to quantify the correctness of an analysis; or how close 
the measured value is to the “true” value.  Precision is used to quantify the reproducibility of 
our technique; or how close to the previous measurements will our next measurement be?  A 
common analogy used when discussing the terms accuracy and precision is that of hitting a 
target.  In Figure 22.1 (a) we have a situation in which the reproducibility of each attempt is low 
but if we average the distance of each attempt from 
the bull’s eye, we get an average value very close to a 
perfect bull’s eye.  We would say that the precision is 
low but the accuracy of the mean can be made 
acceptable if enough data is collected and the results 
averaged.  Conversely in Figure 22.1 (b) we have a 
scenario in which the reproducibility of each shot is 
relatively high but the shooter consistently failed to hit 
the bull’s eye.  We would say that the precision is high 
but the accuracy is low.  Averaging these shots will not 
yield a result close to the bull’s eye.  Relating these 
results to the previous section, we would conclude that 
this shooter has a systematic error of shooting high and 
to the left in addition to the random error one normally sees with target shooting.  Finally in 
Figure 22.1 (c) we have a scenario in which the precision and accuracy are both relatively high.   
 
Tying these ideas together we recognize that the precision of an experiment is related to our 
ability to minimize random error.  In target (b) and (c) of Figure 22.1 we see relatively small 
random error.  They are both precise but only target (c) is also accurate.  The accuracy of an 

The precision of an experiment is 
influenced most by our ability to 
control random error. 
 
The accuracy of an experiment is 
influenced most by our ability to 
control systematic error. 
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experiment is related to our ability to minimize systematic error.  For example, target (b) shows 
a systematic error resulting in a high and right pattern resulting in an inaccurate result.   
 
22.4 - Statistical Tools 
Population vs. Sample 
Before we delve too deeply into specific statistical tools, we need to define some terms.  The 
term population is used when an infinite sampling occurred or all possible subjects were 
analyzed.  Obviously we cannot repeat a measurement an infinite number of times so quite 
often the idea of a population is theoretical; and in those cases we take a representative sample 
of the entire population.  For example, if you wanted to know the average height of the human 
race, you would have to take a representative sample of people and measure their heights.  
Your result would be an estimate and you would necessarily report the uncertainty of your 
estimate.  However, if the parameters of an experiment are specifically defined, one can 
analyze an entire population.  For example, if your question was “what is the average height of 
your immediate family” then your population has been defined as your immediate family and it 
is now possible to measure the height of the entire population.  Despite your ability to collect 
data on the entire population, you still have random error associated with each measurement.   
 
Be careful to distinguish the statistical use of the word sample from the way a chemist often 
uses the word “sample”.  For example, if we were analyzing the soil in a field for arsenic 
concentration, we might go out to the field and collect 20 representative soil “samples” and 
bring them back into the lab.  The 20 soil “samples” would give us 20 data points.  The 
statistician would call the entire set of 20 data points the sample since the 20 data points are 
being used to sample the entire population.  It can be a confusing tangle of words so take a 
moment to think through it. 
 
Mean 
The term mean is synonymous with the term average and is obtained by summing all of the 
results from an analysis and dividing by the total number of individual results (N).  The symbol 
for a population mean is µ and the symbol for a sample mean is 𝒙𝒙�.   
 

𝝁𝝁 =  ∑ 𝝁𝝁𝒊𝒊𝒊𝒊=𝑵𝑵
𝒊𝒊=𝟏𝟏
𝑵𝑵

     Eq. 22.1 

𝒙𝒙� =  ∑ 𝒙𝒙𝒊𝒊𝒊𝒊=𝑵𝑵
𝒊𝒊=𝟏𝟏
𝑵𝑵

     Eq. 22.2 
 
where µi and  xi are the results of the ith experiment.   
 
As N  ∞, 𝒙𝒙�  µ.  How quickly 𝒙𝒙�  µ is dependent upon the relative amount of random error 
(precision) associated with each individual measurement, xi.  We quantify the random error 
using two statistical tools called the standard deviation and the variance. 
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Standard Deviation and Variance 
The equations for calculating a standard deviation of a population and the standard deviation of 
a sample are given in Equations 22.3 and 22.4.  The symbol for a population standard deviation 
is σ and the symbol for a sample standard deviation is s. 
 

𝝈𝝈 = �∑ (𝒙𝒙𝒊𝒊−𝝁𝝁)𝟐𝟐𝑵𝑵
𝒊𝒊

𝑵𝑵
    Eq. 22.3 

 

𝒔𝒔 = �∑ (𝒙𝒙𝒊𝒊−𝒙𝒙�)𝟐𝟐𝑵𝑵
𝒊𝒊
𝑵𝑵−𝟏𝟏

    Eq. 22.4 
 

If we take a close look at Equations 22.3 we see that the term (xi-µ) is nothing more than the 
deviation of an individual data point from the population mean.  We then square the deviation 
values for each data point to get rid of the negative sign.  By summing all of the squares, 
dividing by N and taking the square root we are left with an average absolute deviation.  So for 
a population, the standard deviation is simply the absolute value of the average deviation from 
the mean.  However when determining the standard deviation of a sample, we have a slight 
modification to the equation.  In Equation 22.4, we use (N-1) in the denominator instead of N.  
The term (N-1) is defined as the degrees of freedom for a sample set.  Degrees of Freedom 
represent the number of repeated measurements (a.k.a. replicates) that are free to vary.  Since 
the mean of a sample set is constrained by the mean of the population, the last data point is 
not “free to vary” since the average of all data points must represent the mean of the 
population.  Degrees of freedom show up in several other statistical tools so it is important that 
you take a moment to learn this term.   

On many calculators, the buttons for calculating standard deviation are labeled σ & σn-1, where 
σn-1 is the sample standard deviation that we have represented here with the symbol “s” as 
defined in Equation 22.4.  One rarely samples an entire population in a laboratory experiment 
so in almost every case you will want to use Equation 22.4 or your σn-1 button on your 
calculator to calculate “s”.  
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Activity – Using Excel® to generate a mean and standard deviation. 
Recreate the spreadsheet seen in Figure 22.2 in Microsoft Excel®.  Select 
cell B13 and click on the fx button to open the Insert Function dialog box 
(see Figure 22.3).  From the drop down window in the Insert Function 
dialog box, select Statistical.  And in the Select Function window select 
AVERAGE.  The Function Argument dialog box will open (see Figure 22.4).   
The AVERAGE function will use Equation 22.2 to calculate the average of 
the data set.  In the Number1 field enter the range of addresses for the 
numbers you wish to average.  In this example the range of addresses is 
B3:B12.  Or you can click the grid button (cirled in blue in Figure 22.4) and 
drag and drop the range of values to be averaged.  Click OK and the 
average of cells B3  B12 will be returned in cell B13.  Now select cell B14 
and repeat the above sequence of steps but this time select the STDEV.S 
function instead of the AVERAGE function.  STDEV.S uses Equation 22.4 to 
calculates the standard deviation of a sample.  The Function Arguments 
box will open again and you will need to enter the range of values for the 
data set (B3:B12) or you can use the drag and drop function.  Your final 
spread sheet should resemble the one shown in Figure 22.2.  We will revisit 
this data set when we discuss standard error and confidence limits (CL) so 
take a moment to save your spreadsheet as Fish.   

 
Figure 22.2:  Spreadsheet 
demonstrating the use of 
Excel to calculate a mean 
and a standard deviation. 

 

 
Figure 22.3:  Insert Function Dialog Box 

 
 
Figure 22.4:  Function Arguments Dialog Box. 

 

Although the key strokes differ from calculator to calculator, most scientific calculators can 
perform the statistics function we outlined in the Activity above.  The steps typically involve 
entering the data points into a data array (often symbolized with a Σ+ button).  As you enter 
each data point, the total number of points in the array will be displayed as N=#.  Once you 
have entered your data array, you can press the �̅�𝑥 button to display the average or the σ or σ(n-

1) buttons to display the appropriate standard deviation. 

 
  

677 
 



Exercise 22.1:  Using the same data set we examined in the above activity, use the statistical 
functions on your calculator to determine the mean and the standard deviation of the data set.  
You may need to review your owner’s manual or visit the manufacture’s website for 
instructions on using the stats functions on your calculator.   
 
 
Exercise 22.2:  Use Excel® or a similar spreadsheet program to determine the mean and 
standard deviation of the following data sample.  Repeat the analysis using your 
calculator’s statistical functions. 
Lead in Drinking Water 
Replicate 1 2 3 4 5 6 7 8 9 10 
ppm 2.002 1.996 2.000 1.995 1.999 1.987 2.010 2.014 2.007 2.004 
 

Exercise 22.3:  Use Excel® or a similar spreadsheet program to determine the mean and 
standard deviation of the following data sample.  Repeat the analysis using your calculator’s 
statistical functions. 
Lead in a Paint Chip 
Replicate 1 2 3 4 5 6 7 8 9 10 
ppm 1001.9 989.0 1020.4 996.1 1002.4 990.0 1019.4 991.3 999.2 1002.4 
 
Standard Error & Error Bars 
In the introduction to this chapter we reported a mass as 2.15 ±0.01 grams and mentioned that 
the ±0.01 indicated one standard deviation unit above and below the mean and in our activity 
above, we reported the concentration of mercury in fish flesh as 5.1 ±1.6 ppb.  The 
conventional way to report error graphically is to include “error bars".  Chemist typically report 
error using standard deviation however not all disciplines of science share the same 
conventions.  Another very common way to represent error is to report a value called the 
standard error.  The standard error is related to standard deviation as seen in Equation 22.5 
 

𝑺𝑺.𝑬𝑬. =  𝒔𝒔
√𝑵𝑵

     Eq. 22.5 
 
Note that for a given set of measurements, the standard error will always be less than the 
standard deviation.    
 
Excel allows the user to report error bars on a graph as either the standard deviation, standard 
error, or as a percentage of the mean.  Additionally, Excel allows you to add a customized value 
for the error bars.  It is important that you specify how you are reporting your uncertainty in 
your numbers.  This is appropriately done in the figure caption. 
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Figure 22.6:  Histogram demonstrating 
a normal distribution of points about a 
mean:  𝒙𝒙� = 𝟐𝟐𝟐𝟐,𝒏𝒏 = 𝟐𝟐𝟓𝟓𝟓𝟓𝟓𝟓,𝝈𝝈 = 𝟐𝟐. 

Activity – Using Excel® to calculate standard error and plotting error bars on a bar-graph. 
Open the spreadsheet Fish that you created in the previous 
Activity.  We are going to program Eq. 22.5 for the standard 
error into cell B15.  First we need to calculate the square root 
of N.  Select cell B17 and type “=sqrt(10)”.  Excel will return a 
value of 3.16.  Next select cell B15 and type “=B14/B17”.  
Excel will return a standard error of 0.51. 
 
To display the standard error as error bars on a graph, first 
create a graph of your data.  In this activity, we have created 
a column graph.  Next, place your cursor in the graph and 
“left-click”8.  This will display the “Chart Tools” group.  From 
the “Chart Tools” group, select the “Layout” tab.  Next select 
“Error Bars” from the “Analysis Group” and fill in the correct 
parameters.  Your spread sheet should now resemble the one 
in Figure 22.5.  We will return to this spread sheet when we 
discuss confidence limits so be certain to save your work. 

 
Figure 22.5:  Determining Standard 
Error and displaying it on a graph. 

 
Normal Distributions 
For data in which the error is truly random, the probability of obtaining a specified value for an 
individual data point (xi) is a function of the population mean (µ), and the standard deviation of 
the analytical method being employed (σ).  Equation 22.6 shows a normal probability 
distribution function  
 

𝒇𝒇(𝒙𝒙) =  𝟏𝟏
𝝈𝝈√𝟐𝟐𝟐𝟐

𝒆𝒆−
(𝒙𝒙−𝝁𝝁)𝟐𝟐

𝟐𝟐𝝈𝝈𝟐𝟐      Eq. 22.6 
 
where x is the value of a particular data point, σ is the 
standard deviation, µ is the mean of the population 
and fx is the probability of obtaining a particular value 
of “x”.  Stating Equation 22.6 in plain English, the 
probability of obtaining a particular value of “x” when 
sampling a population is a function of the true value 
for that population (µ) and the precision of the 
technique used (σ).  Equation 22.6 is referred to as a 
normal probability function (npf) or a Gaussian 
distribution or colloquially as “a bell curve”.   
 
In modern instruments, data is collected digitally so 
data is discrete9.  You do not get a true “bell curve” 
but instead you get a histogram of points that fall within the digital resolution of the processor.  

8 If you are using an Apple® computer, the “left-click” commands can be obtained by holding down the apple 
command key while clicking. 
9 See Chapters 4 & 5 for a review of analog to digital converstion. 
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For an npf, the histogram will resemble a bell shaped distribution about the mean.  Figure 22.6 
shows a histogram for a measurement in which the error followed an npf and the “true” value 
was 25.  Random error in the analysis returned a range of values with a mean value 
approximately centered at 25.  If you traced a line through the top of each bar in the graph, the 
histogram approximately conforms to a normal distribution function. 
 
Activity – Random Number Generation and Plotting a Histogram in Microsoft Excel®  
The point of this activity is to help you visualize how N, 𝒙𝒙�, and σ affect the distribution of data points 
within a sample set. 
 
Many of the advanced statistical tools available in Excel® are found in the Analysis Tool Pack.  The 
Analysis Tool Pack is not included in the default installation of Excel® so you may need to “turn it on” if 
you have never used advanced statistical tools in your copy of Excel®.  Each version of Excel® has 
different steps for activating the Analysis Tool Pack.  Activate the help screen on your copy of Excel® and 
select Analysis Tool Pack and then follow the instructions for your particular version of Excel® 
 
First we will use Excel’s random number generator.  Select Random Number Generation from the Data 
Analysis Tool Pack.  The Random Number Generation dialog box will open (see Figure 22.7).  Fill in the 
fields as shown.  The random number generator will return a string of numbers with a mean of 25 and a 
standard deviation of 1. 

 
Figure 22.7: Random Number Generator 
Dialog Box 

 
 
Figure 22.8:  Histogram Dialog Box. 

Next select Histogram from the data analysis tool pack.  The Histogram dialog box will 
open (see Figure 22.8).  Fill in the Histogram dialog box as shown and select “OK”.  Excel 
will generate a data table similar to the one shown to the right.  To generate a 
histogram Plot the Bin # vs. Frequency as a Column Graph.  Your graph should resemble 
Figure 22.6.  You should notice that the histogram has the beginnings of a bell curve but 
the existence of random error is visibly evident.  Now repeat this activity with a much 
larger N values such as 1000 or 2000.  Observe how the shape of the histogram has 
changed.  Repeat the exercise again and this time decrease the standard deviation.  
What affect does N and σ have on the shape of the histogram?  
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Figure 22.9:  Normal probability 
distribution.  The ranges indicate the 
percentage of all data points as a 
function of the distance from the 
mean.  The x-axis is in standard 
deviations from the mean. 

Exercise 22.4:  In your own words, explain how changing N and changing σ affects the 
histogram generated in the above Activity. 
  
A normal probability function represents the way data is 
scattered about a mean when the error in the sampling is 
the result of random error.  Figure 22.9 shows a normal 
probability distribution with the area under the curve 
integrated as a function of standard deviation.  We see 
that 68.2% of all data points fall within a range of ±σ 
from the mean, 95.4% of all data points fall within ±2σ of 
the mean and by the time we get to ±3σ from the mean 
we have incorporated 99.7% of all data points.  If we 
repeated an analysis 1000 times, we could reasonably 
expect that only 3 data points would fall outside the ±3σ 
range.  Knowing the standard deviation allows us to 
predict the likelihood of the next sampled data point 
residing within a specified range from the mean. 
 
 
 
Example 22.1:  The Bell Curve’s shape as a function of the standard deviation 
Figure 22.10 shows two different normal 
probability functions (npf).  Imagine these two npf 
curves represent the analysis of a chemical 
sample under different experimental conditions.  
Each experiment produced a sample mean of 50 
however one technique produced a data set with 
a standard deviation of 5 while the other data set 
had a standard deviation of 10.  In the case where 
s = 5, nearly 99.7% of all data points fell within 
the range of 40 – 60.  In the case where s = 10, we 
have to expand the range to 20 – 80 in order to 
capture 99.7% of all data points.  If we could only 
afford to repeat the analysis a few times (time = 
$) we would have a lot more confidence that our 
sample mean is close to the population mean for  

 
Figure 22.10:  Two npf curves.  The narrow curve 
has a standard deviation of 5.  The wide curve has a 
standard deviation of 10. 

the technique where s = 5 than we would for the technique where s = 10. 
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Activity –Plotting a normal distribution function in Excel® 
Create the following worksheet in Excel® (See Figure 22.11)  
Create a column of numbers from 2 to 600 in intervals of 2 
in cells A2  A601.  Place a mean value of 301 in cell D1 
and your standard deviation of 50 in cell D2.  Then select cell 
B2 and click the “insert function” link (fx) and choose 
NORMDIST.  The ”Function Arguments” box will open.  For 
the “x” argument choose cell A2.  For the “Mean” argument 
box, type $D$1 and for the standard deviation argument 
box, type $D$2. The dollar signs in the cell addresses lock 
the addresses and prevent them from scrolling.  In the 
“Cumulative” argument field type the word “FALSE”.  The 
NORMTDIST function will use Equation 22.5 to return a 
probability value for obtaining a value of “2” in cell B2.  
Select cell B2 again and drag and drop it to cell B601.  The 
“B” column now contains the probability of obtaining the 
values listed in the “A” column. Plot an XY scatter plot of 
cells A2:A601 vs. B2:B601 and insert the graph in your 
worksheet.  You should see a classic “bell curve”.  Now play 
with your mean and standard deviation values and observe  

 
Figure 22.11:  Example Spreadsheet for 
programing a Gaussian Curve. 

how the shape of the Gaussian distribution changes as a function of each variable. 
 
Confidence Limits 
Earlier we learned how to calculate a standard error.  Another common statistical tool for 
reporting the uncertainty (precision) of a measurement is the confidence limit (CL).  For 
example we might report the percent alcohol in a solution as 13% with a 95% CL of ±2%, where 
the ±2% represents the CL.   
 
Unless otherwise stated, the reported CL is at the 95% CL and represents the range in which we 
are 95% certain the “true” answer lies.  The reason the 95% CL is the accepted norm is because 
95.4% of all data points in a normal distribution is encompassed by a range of approximately 
±2σ.  It is reported at 95% instead of 95.4% for purposes of simplicity.  However as you will 
soon see, it is possible to calculate CL values other than the 95% CL. 
 
We define CL using σ.  Recall that σ is the standard deviation of the entire population.  When 
we do not know σ we use “s” instead and a fudge factor, which we will describe shortly.  If we 
know the standard deviation for the entire population, then the 95% CL10 is simply 
 

95% CL = ±2σ   Eq. 22.7 
 
and we would report the mean as 
 

10 To be completely accurate, the 95% confidence limit is actually the 95.4% confidence limit because it represents 
±2σ from the mean (see Figure 22.5). 
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µ ±2σ 
 

However we seldom know the mean or the standard deviation of an entire population.  All 
chemical analyses deals with a sampled populations.  The CL for a sample is given in Equation 
22.8 
 

𝑪𝑪𝑪𝑪𝒏𝒏𝒇𝒇𝒊𝒊𝑪𝑪𝒆𝒆𝒏𝒏𝑪𝑪𝒆𝒆 𝒍𝒍𝒊𝒊𝒍𝒍𝒊𝒊𝒍𝒍 = ±𝒍𝒍 𝒔𝒔
√𝑵𝑵

    Eq. 22.8 
 
and we would report the average as11 

𝒙𝒙� ± 𝒍𝒍
𝒔𝒔
√𝑵𝑵

 

 
 were 𝒙𝒙�  is the mean of the sample, “s” is the 
standard deviation of the sample, N is the number of 
data points in the sample and “t” is a “fudge factor” 
taken from Table 22.1. 
 
Using Spreadsheets to Determine Confidence Limits 
As we have seen, modern spreadsheets such as 
Microsoft Excel® are capable of very sophisticated 
statistical analysis.  The following Activity will walk 
you through the steps of calculating the CL for a 
sample mean. 
 

Activity- Using Excel to calculate confidence limits. 
Open the spreadsheet Fish that you created in the 
previous activities.  We are going to use Excel® to 
determine the 95% CL of our data set. 
 
Select cell B16 and click on the fx button once again.  
From the Insert Function dialog box select 
CONFIDENCE.NORM.  The following dialog box will 
appear.  To calculate a 95% CL you need to input the    

11 Recall that we defined 𝒔𝒔
√𝑵𝑵

 as the standard error in Equation 22.5. 
12 The term (N-1) is the degrees of freedom for the sample set. 

Table 22.1: Confidence Limit t-values as a 
function of (N-1)12 
N-1 90% 95% 99% 99.5% 
2 2.920 4.303 9.925 14.089 
3 2.353 3.182 5.841 7.453 
4 2.132 2.776 4.604 5.598 
5 2.015 2.571 4.032 4.773 
6 1.943 2.447 3.707 4.317 
7 1.895 2.365 3.500 4.029 
8 1.860 2.306 3.355 3.832 
9 1.833 2.262 3.205 3.690 
10 1.812 2.228 3.169 3.581 
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uncertainty in the Alpha field as 1.00 – CL  You need 
to input the CL as a decimal (1.00 – 0.95 = 0.05).  
Enter the standard deviation (or the address of the 
standard deviation) into the “Standard_dev” field.  In 
the “Size” field enter the value of “N”; the total 
number of data points (10) and click “OK”. 
 
At this point, your spreadsheet should resemble the 
one shown in Figure 22.12.  You can calculate other 
CLs by changing the value of alpha. 
 
In this activity we calculated the 95% CL for the 
analysis of mercury in fish.  If we were to report the 
answer to the hundredth place we would say that 
the average concentration of mercury in fish is 5.10 
with a 95% CL of ±1.00.  The implication of the CL is 
that we are 95% certain that the “true” value lies  

 
Figure 22.12:  Data for the analysis of mercury in 
fish flesh.  The data includes the mean, standard 
deviation, standard error, 95% C.L. and a plot of 
the data showing the S.E. as error bars. 

between 4.1 ppb and 6.1 ppb.  Or to state this another way, if we repeated the experiment one more 
time, we are 95% confident that the next data point will lie within this range. 
 
Exercise 22.5:  For the data set used in the above activity, determine the 90% and the 99% CL 
 
Exercise 22.6:  For the data set below, determine the mean, standard deviation and 95% CL 
   3.06 
 
Propagation of Error 
Reporting the standard deviation, or the standard error or the CLs for a measured data point is 
an acceptable way of portraying the precision of a measurement.  But what do you do if you 
use two or more measured values in a computation?  How do you report the confidence in the 
computed value?  For example, imagine you determined the density of an object by 
independently measuring the mass and the volume.  Each of those measurements contains 
error.  In other words, you have an error associated with both the volume measurement and 
the mass measurement and when we divide the mass by the volume to get density we want to 
be able to report the composite error of the resulting density.  We need to know how to 
propagate the standard deviations through various mathematical manipulations.  Table 22.2 
outlines this process13.  The standard deviation of a computed result is given as SR where R is 
the computed result. 
 
Once you have propagated the standard deviation through the mathematical manipulations, 
the 95% CL can be approximated as ±2s.  Similarly, the 99.7% CL can be approximated as ±3s 
however, if you wish to calculate a CL other than the 95% CL or the 99.7% CL you will need to 

13 For more on propagation of error see Data Reduction and Error Analysis for the Physical Sciences 3rd ed. by Philip 
R. Bevington and K. Robinson.  McGraw Hill, 2002  or  Math for Chemistry 2nd ed. By Paul Monk and J. Munro.  
Oxford University Press, 2010. 
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determine the degrees of freedom (df) for the calculated value using Equation 22.9 and then 
use Equation 22.8 or Microsoft Excel® to find the CL 
 
Table 22.2:  R = Computed Result.  SR = Standard Deviation of Result 
Calculation Example Standard Deviation of Result (R) 
Multiplication/Division R = (𝜶𝜶 𝒙𝒙 𝜷𝜷)

(𝜸𝜸 𝒙𝒙𝒙𝒙)
 SR = R��𝒔𝒔𝜶𝜶

𝜶𝜶
�
𝟐𝟐

+ �𝒔𝒔𝜷𝜷
𝜷𝜷
�
𝟐𝟐

+ �𝒔𝒔𝜸𝜸
𝜸𝜸
�
𝟐𝟐

+ �𝒔𝒔𝒙𝒙
𝒙𝒙
�
𝟐𝟐
 

Addition/Subtraction R = α − β + γ + δ SR = �𝒔𝒔𝜶𝜶 + 𝒔𝒔𝜷𝜷 + 𝒔𝒔𝜸𝜸 + 𝒔𝒔𝒙𝒙 
Logarithm R = log(α) SR = 𝟓𝟓.𝟒𝟒𝟒𝟒𝟒𝟒 𝒔𝒔𝜶𝜶

𝜶𝜶
 

Inv. Log R = inv-log(α) SR = R(2.303Sα) 
Exponents R = αx SR = RX�𝒔𝒔𝜶𝜶

𝜶𝜶
� 

α, β, γ and δ are experimentally derived data with standard deviations of sα, sβ, sγ & 
sδ respectively. 
 

df = 
�𝒔𝒔𝜶𝜶

𝟐𝟐
𝑵𝑵𝜶𝜶
� +

 𝒔𝒔𝜷𝜷
𝟐𝟐

𝑵𝑵𝜷𝜷
� + 

𝒔𝒔𝜸𝜸𝟐𝟐
𝑵𝑵𝜸𝜸
� + 𝒔𝒔𝒙𝒙

𝟐𝟐

𝑵𝑵𝒙𝒙
� �

𝒔𝒔𝜶𝜶𝟒𝟒
𝑵𝑵𝜶𝜶(𝑵𝑵𝜶𝜶−𝟏𝟏)� +

 𝒔𝒔𝜷𝜷
𝟒𝟒

𝑵𝑵𝜷𝜷�𝑵𝑵𝜷𝜷−𝟏𝟏�
� + 

𝒔𝒔𝜸𝜸𝟒𝟒

𝑵𝑵𝜸𝜸�𝑵𝑵𝜸𝜸−𝟏𝟏�
� + 𝒔𝒔𝒙𝒙

𝟒𝟒

𝑵𝑵𝒙𝒙(𝑵𝑵𝒙𝒙−𝟏𝟏)�
    Eq. 22.9 

 
where Nα, Nβ, Nγ and Nδ are the number of replicate data points for the experimentally 
derived data sets α, β, γ and δ with standard deviation of sα, sβ, sγ & sδ respectively. 

 
Example 22.3 – Let us imagine we were determining the volume of an unknown solid by displacement of 
water in a graduated cylinder (∆V = Vf-Vi).  The initial volume was 23.40ml and the final volume was 
24.95ml and ∆V = 24.9 – 23.2 = 1.7ml.  You might be tempted to conclude that the uncertainty is ±0.1ml.  
However if you were to be rigorous in your propagation of error you would recognize there was an 
implied ±0.1ml uncertainty in both the initial and final volume readings.  Table 22.2 showed us that the 
proper way to estimate error when subtracting two numbers is     
 

S∆V = �𝒔𝒔𝑽𝑽𝒇𝒇 + 𝒔𝒔𝑽𝑽𝒊𝒊 = √𝟓𝟓.𝟐𝟐 = 𝟓𝟓.𝟒𝟒𝟒𝟒 
 
Now let us imagine we determined the mass on a digital balance and obtained a value of 3.003 grams.  If 
you recall what you were taught about significant figures, the implication is that the uncertainty is in the 
thousandth place and a reasonable estimate of the standard deviation would be ±0.001g.  What is the 
uncertainty in the density?   
 

𝑪𝑪 =  
𝒍𝒍𝒎𝒎𝒔𝒔𝒔𝒔
𝒗𝒗𝑪𝑪𝒍𝒍𝒗𝒗𝒍𝒍𝒆𝒆

=
𝟒𝟒.𝟓𝟓𝟓𝟓𝟒𝟒𝟎𝟎
𝟏𝟏.𝟕𝟕𝒍𝒍𝒎𝒎

= 𝟏𝟏.𝟕𝟕𝟕𝟕𝟎𝟎 𝒍𝒍𝒎𝒎�  

 
If you simply applied the rules for reporting significant figures, you might assume the uncertainty in this 
number were ±0.01, however since we have a calculated data point resulting in measurements made 
with different precisions, a more rigorous application of propagation of error is required.  Take another 
look at Table 22.2.  The equation for propagation of errors for multiplication and division is 
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Sd = R��𝒔𝒔𝑽𝑽
𝑽𝑽
�
𝟐𝟐

+ �𝒔𝒔𝒍𝒍
𝒍𝒍
�
𝟐𝟐

= 𝟏𝟏.𝟕𝟕𝟕𝟕��𝟓𝟓.𝟏𝟏𝟒𝟒
𝟏𝟏.𝟕𝟕𝟕𝟕

�
𝟐𝟐

+ � .𝟓𝟓𝟓𝟓𝟏𝟏
𝟒𝟒.𝟓𝟓𝟓𝟓𝟒𝟒

�
𝟐𝟐

= 𝟓𝟓.𝟓𝟓𝟎𝟎 
 
We would want to report our final density as 
 

𝑪𝑪 = 𝟏𝟏.𝟕𝟕𝟕𝟕𝟎𝟎 𝒍𝒍𝒎𝒎� ± 𝟓𝟓.𝟓𝟓𝟎𝟎 
 
Exercise 22.7:  Assume you measured the mass of 1.0014 grams of potassium oxalate (K2C2O4) 
on a digital balance and placed it in a 1 liter volumetric flask with a rated precision of 0.001 
liters.  Calculate the molarity of the final solution and report the molarity with a 95% CL using 
the appropriate propagation of error equation. 
 
 
Analyzing Data Sets 
In addition to reporting the error associated with an individual data set, the analytical chemist 
often needs to compare and analyze the variance in data taken under different circumstances.  
The different circumstances can be as benign as collecting data on different days or potentially 
more significant such as collecting data using different instruments or data collected by 
different technicians.  For example, imagine you are perfecting a C-18 reverse phase HPLC 
method for the purification of a pharmaceutical product.  In the final protocols, how important 
is it that you purchase your C-18 columns from the same manufacturer each time you replace 
the column?  Are the changes you see in the data when you change suppliers statistically 
significant?  We could ask the same question of the solvent.  Is it statistically important that we 
use the same supplier of solvent every time we run the procedure?  We can investigate these 
types of questions by using several different statistical tools. 
 
Because of random error anytime you repeat an analysis, you expect to obtain different results.  
But are the observed differences within the expected variance of the technique?  This is a 
fundamental question in an analytical lab.  You may have a data point that seems significantly 
different than the other replicates in the data set and you would like a statistical basis for 
keeping or rejecting that data point.  Or you may want to know the effect of a particular 
experimental parameter on the overall variance of a method.  For instance, when comparing 
the means of data taken by two different lab technicians, are the observed differences in the 
means statistically significant?  Or you may want to compare the results of an analysis using 
two different instruments (i.e. two different UV-vis spectrometers) or two different techniques.  
Again you will want to answer the question “are the observed differences statistically 
significant”.  In the next few section, we will introduce tools that you can use to help answer 
these types of questions. 
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Identifying Outliers: Q-Tests 
Although the International Organization of Standardization (ISO) now 
recommends that we use the Grubb’s test for identifying outliers, the Q-test 
still remains a very commonly used method and we introduce it here because 
you are likely to encounter it in your careers.  We will examine the Grubb’s test 
in the next section.   
 
Sometimes you obtain a set of replicate data and there is one (or more) data 
point that just “seems wrong”.  For example, Table 22.3 shows the results for 
the N = 10 replicate analysis of caffeine in tea.  The data points tend to cluster 
around 80 ppm with the exception of Cup #5 which had a lower reading of 72 
ppm.  The sloppy analyst might be tempted to throw out Cup #5’s data based 
solely on intuition; however it is quite possible that 72 ppm falls within the 
95% confidence interval for this distribution of points.  It is unethical to simply 
ignore data that you dislike.  You should include all data in a report, even 
outliers, and if you decide to reject a point in your final analysis, you must have 
a statistical justification for that decision.  A Q-test is a statistical tool used to 
identify an outlier within a data set14.  To perform a Q-test you must first 
arrange your data in a progressive order (low-to-high or high-to-low) and then 
using Equation 22.10, you calculate an experimental Q-
value (Qexp).  If Qexp is greater than the critical Q-value 
(Qcrit) found in Table 22.4 then you are statistically justified 
in removing your suspected outlier from further 
consideration.15  You then recalculate the mean, standard 
deviation and the 95% CL with the outlier removed from 
the calculations. 
 
 

𝑸𝑸𝒆𝒆𝒙𝒙𝒆𝒆 =  �𝒙𝒙𝒒𝒒−𝒙𝒙𝒏𝒏+𝟏𝟏�
𝒘𝒘

  Eq. 22.10 
 

Xq = suspected outlier 
Xn+1 = next nearest data point 
w = range (largest – smallest data point in the set) 

 
  

14 R. B. Dean and W. J. Dixon "Simplified Statistics for Small Numbers of Observations". Anal. Chem., 23 (4), 1951, 
636–638 // Rorabacher, D.B. "Statistical Treatment for Rejection of Deviant Values: Critical Values of Dixon Q 
Parameter and Related Subrange Ratios at the 95 percent Confidence Level". Anal. Chem., 63 (2), 1991, 139–146 //  
 

Table 22.3 
Cup ppm 

Caf 
1 78 
2 82 
3 81 
4 77 
5 72 
6 79 
7 82 
8 81 
9 78 
10 83 
Avg 79.3 
StDev 3.3 
95% 
C.L. 

2.0 

Table 22.4:  Critical Rejection 
Values for Identifying an Outlier: 
Q-test 

Qcrit 
N 90% CL 95% CL 99% CL 
3 0.941 0.970 0.994 
4 0.765 0.829 0.926 
5 0.642 0.710 0.821 
6 0.560 0.625 0.740 
7 0.507 0.568 0.680 
8 0.468 0.526 0.634 
9 0.437 0.493 0.598 
10 0.412 0.466 0.568 
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Example 22.4- Perform a Q-test on the data set from Table 22.3 and determine if you can statistically 
designate data point #5 as an outlier within a 95% CL  If so, recalculate the mean, standard deviation and 
the 95% CL 
 
Strategy – Organize the data from highest to lowest data point and use Equation 22.10 to calculate Qexp. 
 
Solution – Ordering the data from Table 22.3 from highest to lowest results in  

 
Substitution into Equation 22.10 yields 

𝑸𝑸𝒆𝒆𝒙𝒙𝒆𝒆 =  
�𝒙𝒙𝒒𝒒 − 𝒙𝒙𝒏𝒏+𝟏𝟏�

𝒘𝒘
 =  

|𝟕𝟕𝟐𝟐 − 𝟕𝟕𝟕𝟕|
𝟏𝟏𝟏𝟏

= 𝟓𝟓.𝟒𝟒𝟐𝟐𝟐𝟐 

Using the Qcrit table, we see that Qcrit=0.466.  Since Qexp<Qcrit, you must keep the data point. 
 
Exercise 22.8:  Use the data in Table 22.3 and determine what value (in ppm) would cup #5 
have to be before Equation 22.10 would identify it as an outlier. Show your work. 
 

Exercise 22.9:  Imagine the following set of 5 replicate data 
were collected for the analysis of lead in drinking water.   

Trial 1 2 3 4 5 
ppm 
(Pb) 

1.3 1.4 1.0 1.3 1.4 

(a)  Calculate a mean, standard deviation and 95% CL on the data set (you may want to use 
a spread sheet). 

(b) Perform a Q-test on the data set.  How does the performance of a Q-test alter your 
answer in part a? 

 
Identifying Outliers: Grubb’s-Tests 
The recommended way of identifying outliers is to use the 
Grubb’s Test.  A Grubb’s test is similar to a Q-test however 
Gexp is based upon the mean and standard deviation of the 
distribution instead of the next-nearest neighbor and range 
(see Equation 22.11). 
 

𝑮𝑮𝒆𝒆𝒙𝒙𝒆𝒆 =  �𝒙𝒙𝒒𝒒−𝒙𝒙��
𝒔𝒔

    Eq. 22.11 
 

If Gexp is greater than the critical G-value (Gcrit) found in 
Table 22.5 then you are statistically justified in removing 
your suspected outlier from further consideration.  You 
then recalculate the Mean, Standard Deviation and the 95% 
CL with the outlier removed from the calculations. 
 

Table 22.5:  Critical Rejection 
Values for Identifying an 
Outlier: G-test 

Gcrit 
N 90% C.L. 95% C.L. 99% C.L. 
3 1.1.53 1.154 1.155 
4 1.463 1.481 1.496 
5 1.671 1.715 1.764 
6 1.822 1.887 1.973 
7 1.938 2.020 2.139 
8 2.032 2.127 2.274 
9 2.110 2.215 2.387 
10 2.176 2.290 2.482 
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Exercise 22.10:  Perform a Grubb’s test on the data set found in Exercise 22.9.  Report the 
mean, standard deviation and the 95% CL based upon the results of your Grubb’s test. 
 
Analyzing Variance: F-Tests 
The F-test is named after Ronald Fisher who first developed the test in the 1920’s16.  The test 
allows for the comparison of the variance of two different data sets in order to determine if 
there is a statistically significant difference. It is common in a working lab to have data sets that 
were obtained under different circumstances.  For instance, data may have been collected on 
different days, or you may have two different analysts conducting the same measurements.  
When the final results vary, you need a way to determine if the difference is statistically 
significant.  In a manner similar to the Grubb’s test and the Q-test, you perform an F-test by 
calculating an experimental F-value (Fexp) and comparing that to a critical F-value (Fcrit).  If 
Fexp>Fcrit then the variance of the two data sets used to calculate Fexp are statistically different.  
Fexp is determined by the ratio of the sample variances (square of the standard deviations).  The 
larger variance value goes in the numerator so that Fexp is always greater than one.    
 

𝑭𝑭𝒆𝒆𝒙𝒙𝒆𝒆 =  𝒔𝒔𝟏𝟏
𝟐𝟐

𝒔𝒔𝟐𝟐
𝟐𝟐      Eq. 22.12 

 
In this case, the null hypothesis is that the two variances represent the same population.  To 
reject (or accept) the null hypothesis, we compare Fexp to Fcrit.  The tables for critical F values 
are tabulated as a function of CLs and degrees of freedom for 𝒔𝒔𝟏𝟏,

𝟐𝟐   and 𝒔𝒔𝟐𝟐𝟐𝟐.  As a result a full set 
of F-tables can be extensive.  Table 
22.6 is an example of critical F-
values at the 95% CL for degrees of 
freedom up to 10.   
 
Fortunately we do not need a 
complete set of F-tables on hand. 
Microsoft Excel® can be used to 
perform F-tests.  Example 22.5 
shows an example data set collected 
from the HPLC analysis of residual 
acrylamide from a batch of 
polyacrylamide17.  In this study two 
different analysts performed ten 
replicate studies.  The results 
showed a mean value of 10.1 ppb for analyst #1 and 10.5 ppb for analyst #2 with standard 
deviations of 0.9 and 1.5 respectively.  The mean values of 10.1 and 10.5 may seem similar 
enough with a gross deviation between the two means of only 0.4 but what you really want to 

16 R. A. Fisher Statistical Methods, Experimental Design and Scientific Inference.  Oxford University Press: New York,  
1990, 1991, 1995, 1999. 
17 Polyacrylamide is a water absorbent polymer used in diapers.  The monomer is a neurotoxin so it is critical that 
each batch be tested for residual monomer concentration before it is sent to market. 

Table 22.6:  95% C.L. F-Test Critical Values.  The degrees of 
freedom used to calculate 𝒔𝒔𝟏𝟏,

𝟐𝟐   and 𝒔𝒔𝟐𝟐𝟐𝟐 represent the column 
and row headings respectively 

Numerator Degrees of Freedom 

Denominator 
Deg. Free. 

1 2 3 4 5 7 10 

1 161.5 199.5 215.71 224.6 230.2 236.8 241.9 

2 18.51 19.00 19.164 19.25 19.30 19.35 19.40 

3 10.13 9.552 9.2766 9.117 9.014 8.887 8.786 

4 7.709 6.944 6.5915 6.388 6.256 6.094 5.964 

5 6.608 5.786 5.4095 5.192 5.05 4.876 4.735 

7 5.591 4.738 4.3469 4.12 3.972 3.787 3.637 

10 4.965 4.103 3.7082 3.478 3.326 3.135 2.978 
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determine is if a gross deviation of 0.4 is within a 95% confidence interval for the standard 
deviations of the data sets.  Example 22.5 walks you through the performance of an F-test. 
Example 22.5:  To perform an F-test using Excel, you need to enter your data as shown in the 
spreadsheet below and determine the standard deviation for each data set (for example see cell B13 
and C13).  Then determine the experimental F-value using Equation 22.12 and put that value into one of 
the cells (Here we used B14).  Next you need to click on the insert function button (fx) and choose 
F.DIST.RT.  The Function Argument dialog box will open as shown. 
______________________________________________________________________________ 
Spreadsheet 22.1:  Right Tailed F-Test comparing the results of two different analysts for the 
measurement of residual acrylamide monomer in a batch of polyacrylamide (ppb). 

 
______________________________________________________________________________ 
 
Enter your experimentally determined F-value for x and the numerator degrees of freedom18 for 
Deg_fredom1 and the denominator degrees of freedom for Deg_fredom2 and click “OK”.  
 
In the above spreadsheet, the F-test returned a value of 0.077.  If we round that to 0.08 then what this 
test tells us is the two sets of data can be considered the same if we also accept a CL of 92% (1.00 – 0.08 
= 0.92).  If we need an 95% CL, we need the F-test to return a value of 0.05 or less. 
 
Exercise 22.11:  You have just measured the pH of the water sampled from a local lake.  
You have ten replicate measurements with two different pH probes.  The data is 
presented below.  Conduct an F-test on the data set and comment on the results. 

pH of Local Lake Water 
Replicate 1 2 3 4 5 6 7 8 9 10 Avg. pH 
Probe 1 6.74 6.49 6.71 6.62 6.76 6.67 6.99 6.68 6.96 6.52 6.71 
Probe 2 6.93 6.83 6.90 6.79 6.88 6.64 7.10 7.18 7.04 6.97 6.93 
 

  

18 See Equation 22.4 for a review of degrees of freedom. 
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Exercise 22.12:  In 2006, the Arundel County Maryland Department of Health tested local wells 
for elevated levels of arsenic.  They found that 35 out of 71 wells showed elevated levels.  
Atomic Absorption Spectroscopy is a very convenient way to measure arsenic in water.  Imagine 
you are a lab manager and you have given identical arsenic samples to two different 
technicians.  Conduct an F-test on the two sets of data and comment on the results. 
Replicate 1 2 3 4 5 6 7 8 9 10 Avg. ppb (As) 
Tech. 1 0.304 0.306 0.301 0.320 0.324 0.276 0.302 0.329 0.304 0.297 0.306 
Tech. 2 0.331 0.285 0.317 0.298 0.346 0.239 0.307 0.258 0.308 0.326 0.302 

 
ANOVA: A two dimensional F-test 
ANOVA is an acronym for ANalysis Of VAriance.  It is very similar in concept to an F-test and in 
fact we actually calculate an F-value in the analysis.  For example, in Example 22.5 above, we 
imagined a scenario where two different analysts performed the same test on the same batch 
of polyacrylamide.  Let us imagine next that we sent that same batch of polyacrylamide out to 
five different labs and upon receiving the data, we wished to statistically compare the results.  
We could conduct an F-test on each possible pairing of labs but that would be tedious and the 
results hard to interpret.  A more sophisticated approach would be to compare the average 
variance that occurs as a result of changing labs to the average variance that occurs as a result 
of performing replicate samplings.  Spreadsheet 22.2 shows the raw data along with an ANOVA 
analysis with inputs conducted by hand for the purposes of demonstration.  Fortunately for us, 
Excel® will do an ANOVA automatically and you will not need to program each cell manually 
(see spreadsheet 22.3). 
 
There are a total of 50 replicate data points when you combine the data from all five labs.  The 
average result of all 50 points is called the Grand Mean.  In this case we obtained a value of 
10.31 ppb.  For each data point the deviation from the grand mean was calculated (columns: 
D,G,J,M,P).  This value is termed the mean corrected value (dij).  Next we squared the mean 
corrected values (dij2) to generate positive numbers (columns: E,H,K,N,Q).   Next we summed all 
of the dij2 values (SSc) and then divided SSc by the degrees of freedom19 to yield 𝒔𝒔𝒔𝒔���c.  Compare 
the derivation of 𝒔𝒔𝒔𝒔���c to the derivation of a standard deviation (Equation 22.4).  The value 𝒔𝒔𝒔𝒔���c is 
essentially the grand standard deviation of replicates between labs.  Similarly we also 
calculated a 𝒔𝒔𝒔𝒔���r value.  𝒔𝒔𝒔𝒔���r can be thought of as the grand standard deviation of labs between 
replicates.  The F-value is then determined by dividing 𝒔𝒔𝒔𝒔���c by 𝒔𝒔𝒔𝒔���r.  How one uses an F-value is 
demonstrated in the next Activity. 
  

19 See Equation 22.4 for a review of degrees of freedom. 
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Spreadsheet 22.2:-Analysis residual monomer (ppb) found in a batch of polyacrylamide  conducted at 5 
different independent labs;  An ANOVA between 5 independent labs. 
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Activity - Letting Excel Perform ANOVA 
Using the same data we examined in Spreadsheet 22.2, we will perform an ANOVA using the ANOVA 
statistics function in Excel.  From the data analysis tool pack, select “ANOVA: Single Factor”.  The ANOVA 
Single Factor dialog box will open (see Spreadsheet 22.3).  The input range is the total 50 data points 
obtained between all five labs.  In this example, we have the independent labs arranged in columns so 
make sure the “Grouped By Columns” radial button is selected.  Notice that we have also selected the 
“Labels in first row” check box.  The default value for α is 0.05 which will calculate a 95% confidence 
interval for your ANOVA.  You have several options for the output.  If you choose to keep your ANOVA 
output with your raw data, then 
you have to tell Excel where you 
want the data table to start.  In 
this case we began our data table 
at cell W16.   
 
The ANOVA table in Spreadsheet 
22.3 has a calculated F-value of 
0.51897 (the same value we 
calculated by hand).  The p-value 
shown is called the value of 
probability.  Since we selected an 
alpha value of 0.05, we want our 
p-value to be above 0.05 in order 
for the null hypothesis to hold.  In 
other words, this ANOVA study did 
not find any statistically significant 
variance between the five labs.  
 
22.5 – Linear Regression Analysis 
The preceding section provides tools useful to the experimenter when working with repetitive 
data – that is, measurements that are expected to have essentially the same value every time.  
When conducting instrumental analysis, however, it is often the case that we do not know in 
advance the actual magnitude of the measurement, but only an estimate of a range in which 
the measurement might fall.  In such cases, we must prepare and measure standard samples20 
that fall in the expected range in order to calibrate the instrumental response for known 
concentrations.  The fundamental signal that is obtained from an instrument is either a voltage 
or a current, neither of which directly gives us useful information about our sample. In practice 
we use standard calibration curves to relate that fundamental signal to one that is more 
meaningful, such as pH or absorbance.  We then plot that signal as a function of known 
concentrations to yield a calibration curve so that the signal from an unknown sample can be 
used to determine the analyte concentration.  The basic statistical tools outlined above must be 
further developed for application to measurements made using a calibration curve. 
 
For an instrument response that is linear with analyte concentration, we would expect to 
obtain a series of data points that fall on a straight line as the concentration is varied.  However, 

20 Recall that a standard sample is one in which the concentration of analyte is known. 

Spreadsheet 22.3:  A Single Factor ANOVA in Excel. 
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Figure 22.13:  Demonstration of the y-residuals.  The region around 
the third point is expanded in the inset.  The red dot represents 
yi,calc and the large black point represents yi,act.  The difference 
between the two points is (yi,act – yi,calc) for i=3. 

we also expect there to be error in the measured values so the points will have some degree of 
variance from the anticipated straight line.  If we were to graph those values on paper, we 
could use a straightedge to estimate a best fit line for the points.  In the modern electronic age, 
however, it is more common (and more accurate) to use a method called regression analysis to 
discover the best linear approximation from the measured points.   
 
Much of what we need for our analyses can be obtained quickly and easily from Excel™ or 
another spreadsheet software package.  Using the linest function21 in Excel™, we can obtain the 
slope and intercept for the regression, as well as the standard deviations associated with those 
values.  Further, we can extract the coefficient of determination, R2, also known as the ‘R-
squared’ value and the standard error for the y-estimate (essentially the standard deviation for 
the regression), sy.  The R2 has a value between zero and 1, and is often referred to as the 
“goodness of fit” or a “correlation coefficient”.  An R2 value of 1 indicates a perfect fit between 
the actual y-values and those calculated using the linear equation.  The farther the R2 value 
deviates from 1, the greater the deviations between the actual and calculated y-values.  The sy 
value is used in calculating the standard deviation of results for measurements of unknown 
samples obtained using the calibration curve. 
 
It is helpful to understand 
how the software goes 
about calculating an 
equation for the linear 
regression.  To find a best fit 
line (Eq. 22.13), the 
software is programmed to 
minimize the sum of the 
squared differences 
(sometimes called residuals) 
between the actual y-values 
and those calculated by the 
linear equation for each x-y 
pair.  Figure 22.13 provides 
a visual depiction of what 
we mean by these residuals.  
The residuals are squared to 
eliminate any negative 
values and then the slope of 
the line is adjusted until the 
sum of the residuals reaches a minimum value.  If we call the summed residual values value SSy-

y, the software seeks to minimize it in the form of Eq. 22.14. 
 
 𝒚𝒚𝒊𝒊,𝑪𝑪𝒎𝒎𝒍𝒍𝑪𝑪 = 𝒍𝒍𝒙𝒙𝒊𝒊  + 𝒃𝒃       Eq. 22.13 

21 You can accomplish the same thing using the linest function in the function dialog box. 
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  𝑺𝑺𝑺𝑺𝒚𝒚−𝒚𝒚 =  ∑ (𝒚𝒚𝒊𝒊,𝒎𝒎𝑪𝑪𝒍𝒍 − 𝒚𝒚𝒊𝒊,𝑪𝑪𝒎𝒎𝒍𝒍𝑪𝑪)𝟐𝟐𝑵𝑵

𝒊𝒊=𝟏𝟏       Eq. 22.14 
  

  SSy-y = sum of the squared residuals 
  𝒚𝒚𝒊𝒊,𝒎𝒎𝑪𝑪𝒍𝒍 = actual (measured) value for y in a given (i) of an x-y pair 
  𝒚𝒚𝒊𝒊,𝑪𝑪𝒎𝒎𝒍𝒍𝑪𝑪 = y-value calculated from the linear equation  Eq. 22.13 
 
Most of what we need for sample analysis can be obtained fairly directly through Excel (see the 
Activity on the following page and Example 22.6), but in order to accomplish full statistical 
analysis, we need to define one additional quantity, Sx-x, given in Eq. 22.15.  With the 
information obtained from the Excel linest function and Sx-x, we will be able to calculate a 
standard deviation for any y-value calculated for a sample of unknown concentration using the 
linear regression of the calibration plot (Eq. 22.16).   
 

    𝑺𝑺𝒙𝒙−𝒙𝒙 =  ∑ (𝒙𝒙𝒊𝒊 − 𝒙𝒙�)𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏        Eq. 22.15 

  

  𝒙𝒙𝒊𝒊 = value for x in a given (i) of an x-y pair 
  𝒙𝒙�  = the mean of all of the x-values 
 

   𝒔𝒔𝑪𝑪  =  𝒔𝒔𝒚𝒚
𝒍𝒍

 �(𝒚𝒚𝑺𝑺���� − 𝒚𝒚𝑪𝑪𝒎𝒎𝒍𝒍������)𝟐𝟐

𝒍𝒍𝟐𝟐 (𝑺𝑺𝒙𝒙−𝒙𝒙)
+ 𝟏𝟏

𝑵𝑵𝑪𝑪
+  𝟏𝟏

𝑵𝑵𝑺𝑺
        Eq. 22.16 

  

  𝒔𝒔𝑪𝑪 = standard deviation of a calculated y-value for an unknown sample 
  𝒔𝒔𝒚𝒚 = standard error in the y-estimate (from Excel linest function) 
  𝒍𝒍= slope of the regression line (from Excel linest function) 
  𝒚𝒚𝑺𝑺��� = mean of all y-values for NS replicates of the unknown sample 
  𝒚𝒚𝑪𝑪𝒎𝒎𝒍𝒍����� = mean of all y-values for NC samples used in the calibration 
  𝑵𝑵𝑪𝑪 = number of samples used in the calibration 
  𝑵𝑵𝑺𝑺 = number of replicates of the unknown sample 
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Activity - Letting Excel Perform LINEST to give linear regression data 
Set up a calibration data set as 
given in Spreadsheet 22.4.  To have 
Excel calculate the pertinent 
analysis data from the calibration 
information, we use the linest 
function in the following 
procedure: 
1. Highlight an area encompassing 
two columns and three rows22 (the 
highlighted area in Spreadsheet 
22.4 is in columns F and G, rows 7-
9). 
2. With that area still highlighted, 
start typing the function      = linest( 
3. After the open parentheses, 
highlight all the y-values in the 
calibration data, then enter a comma. 
4. Next, highlight all the x-values  in the calibration data, then enter a comma. 
5.  For the next parameter, you need to make a choice.   
a. If you expect that the calibration data should pass through zero (intercept of zero), then enter a zero 
followed by a comma. 
b. If you want the function to calculate an intercept value, enter a 1, followed by a comma. 
6. Now enter a 1, telling Excel to calculate stats beyond just the slope and intercept, close the 
parentheses but do not simply press Enter. 
7. To complete the calculation, press Ctrl + Shift + Enter (while holding down the Ctrl key, press the Shift 
key, and while still holding down both of those, press the Enter key).   
 
In the example given in Spreadsheet 22.4, the completed function looked like this, wherein we allowed 
linest to calculate an intercept value: 
  =LINEST(C7:C11,B7:B11,1,1) 
 
The information that Excel yields from the linest function includes the slope (m, in Cell F-7), the intercept 
(b, G-7), the standard deviation in the slope (sm, F-8), the standard deviation in the intercept (sb, G-8), 
the coefficient of determination (R2, F-9), and the standard deviation in the y-estimate (sy, G-9).   
 
Note that if you need to edit your linest function, you will need to highlight the full 2x3 block again, 
make your edits, then press Ctrl + Shift + Enter. 
 
Exercise 22.13:  Use Eq. 22.14 to calculate SSy-y for the example given in the preceding Activity 
(Spreadsheet 22.4).   
 

22 Actually, Excel will provide additional statistics, if we highlight an area that is 2 columns by 5 rows, but the 
additional two rows of statistics are not generally as useful as the first 3.   

Spreadsheet 22.4:  The LINEST function in Excel 
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Exercise 22.14:  Repeat Exercise 22.13, but use a slope that is 1% lower and an intercept 1% 
higher than that seen in Spreadsheet 22.4.  Compare the SSy-y you get with that found in 22.13.  
Is the result as expected?  Explain. 
 
Example 22.6- Following thee calibration represented in Spreadsheet 22.4, three replicates of a quinine 
sample of unknown concentration were prepared and the fluorescence measured, yielding the values 
406.6, 414.6 and 408.2.  Calculate the quinine concentration in the sample and the standard deviation in 
the calculated value. 
 
Strategy – Use Eq. 22.13 and the linest data in Spreadsheet 22.4 to calculate the quinine concentration.  
Then use Eq. 22.16 to calculate the standard deviation in the calculation. 
 
Solution – The average measured value (𝒚𝒚𝑺𝑺���) for the unknown sample is 409.8, so we can calculate the 
concentration as 
 𝒚𝒚𝑺𝑺��� = 𝒍𝒍𝒙𝒙 + 𝒃𝒃 
  𝟒𝟒𝟓𝟓𝟒𝟒.𝟎𝟎 = 𝟏𝟏𝟒𝟒𝟓𝟓.𝟒𝟒 𝒙𝒙 + 𝟐𝟐.𝟒𝟒𝟐𝟐 
 x = 2.8813 = 2.9 ppm 
 
For Eq. 22.16, we will use the following values  
   sy = 43.0 m = 140.4  Sx-x = 10 
   𝒚𝒚𝑺𝑺��� = 409.8 𝒚𝒚𝑪𝑪𝒎𝒎𝒍𝒍����� = 426.5 
   NC = 5  NS = 3 
  

𝒔𝒔𝑪𝑪  =  𝒔𝒔𝒚𝒚
𝒍𝒍

 �(𝒚𝒚𝑺𝑺���� − 𝒚𝒚𝑪𝑪𝒎𝒎𝒍𝒍������)𝟐𝟐

𝒍𝒍𝟐𝟐 (𝑺𝑺𝒙𝒙−𝒙𝒙)
+ 𝟏𝟏

𝑵𝑵𝑪𝑪
+ 𝟏𝟏

𝑵𝑵𝑺𝑺
    

 

𝒔𝒔𝑪𝑪  =  𝟒𝟒𝟒𝟒.𝟓𝟓
𝟏𝟏𝟒𝟒𝟓𝟓.𝟒𝟒

 �(𝟒𝟒𝟓𝟓𝟒𝟒.𝟎𝟎 − 𝟒𝟒𝟐𝟐𝟒𝟒.𝟐𝟐)𝟐𝟐

𝟏𝟏𝟒𝟒𝟓𝟓.𝟒𝟒𝟐𝟐 (𝟏𝟏𝟓𝟓)
+ 𝟏𝟏

𝟐𝟐
+  𝟏𝟏

𝟒𝟒
   = 0.224 = 0.22 ppm 

 
 
Exercise 22.15:  The following data were obtained for a set of calibration solutions of p-
nitroaniline, measured by absorbance in UV-Visible spectrophotometry. 
 Concentration (ppm)  Absorbance (AU) 
  19.5    0.980 
    9.74    0.440 
    4.87    0.255 
    0.974    0.101 
A p-nitroaniline solution of unknown concentration exhibited an average absorbance of 0.181 
for 5 replicate samples.  Assuming the intercept is zero for the calibration, calculate the 
concentration of the unknown solution and the standard deviation in the calculation. 
 
Exercise 22.16:  Repeat Exercise 22.15, but do not assume the intercept is zero for the 
calibration.  Which set of results do you feel are more accurate?  Explain.  What additional 
information would you need in order to make a more definitive judgment? 
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Exercise 22.17:  The following data were obtained for the calibration of an FAA instrument in 
the measurement of calcium: 
 Concentration of Ca (ppm)  Absorbance (AU) 

0.100     0.010 
0.250     0.024 
0.500     0.069 
1.000     0.093 
2.500     0.225 
5.000     0.427 
7.500     0.628 
10.00     0.804 

A urine sample was treated to remove interferences, resulting in a dilution factor of 5:2 of the 
original urine.  The mean absorbance of three replicates of the diluted urine was found to be 
0.325.  Assuming the intercept is zero for the calibration, calculate the concentration of the 
unknown solution and the standard deviation in the calculation. 
 
If you don’t need a full statistical analysis of your calibration curve and simply want the y = mx + 
b equation and the R2 value, Excel™ also offers a feature called “add trendline”.  The add 
trendline feature is accessed by right clicking on the X-Y scatter plot of the calibration data.  The 
next activity demonstrates the add trendline feature. 
 

Activity – Using Excel™ to add a trend line to a data set. 
Using the same data set from our previous activity, 
create an X-Y scatter plot as shown here.  Highlight 
the X-Y points in the scatter plot and “right click”.  
If using an Apple operating system, hold down the 
Apple key and click.  A dialog box open.  Select Add 
Trendline.  The Format Trendline dialog box will 
open (see below). If you expect your instrument 
response to be linear, then select the linear radial 
button.  Then select Display Equation on  Chart 

 
and Display R-squared value on 
chart.  Hit return.  Your graph 
should now resemble the one 
seen here on the bottom right. 
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22.6 – LOD, LOQ, and LDR 
As noted above, we must expect the presence of random error (noise) in every measurement.  
Sometimes that noise is clearly visible, but other times it is not obvious.  This realization make it 
necessary to contemplate the question “At what point can I trust that my measurement is real, 
and not just noise?”.  Fortunately, statistically sound tools have been developed to help us 
make that judgment. 
 
The limit of detection (LOD) is the lowest value measurable above the background noise.  At 
the LOD, we can be confident that we are measuring some analyte, but we cannot be confident 
about the actual amount.  The limit of quantitation (LOQ) is the minimum value at which we 
can be confident in the quantitative value of the measurement.  The IUPAC23 has demonstrated 
the following for any given analytical method: 
 

 𝒎𝒎𝑳𝑳𝑫𝑫𝒚𝒚 = 𝒚𝒚𝒃𝒃𝒍𝒍𝒏𝒏𝒃𝒃������� + 𝒃𝒃𝑫𝑫 ∙ 𝒔𝒔𝒃𝒃𝒍𝒍𝒏𝒏𝒃𝒃   Eq. 22.17 
 

  LODy = limit of detection of the measurement (y-value) 
  𝒚𝒚𝒃𝒃𝒍𝒍𝒏𝒏𝒃𝒃������� = mean y-values of a set of blank or baseline measurements 
  sblnk = standard deviation of a set of blank or baseline measurements 
  kD = multiplicative factor.  kD = 3 at the 99.9% confidence level 
 
  

𝒎𝒎𝑳𝑳𝑸𝑸𝒚𝒚 = 𝒚𝒚𝒃𝒃𝒍𝒍𝒏𝒏𝒃𝒃������� + 𝒃𝒃𝑸𝑸 ∙ 𝒔𝒔𝒃𝒃𝒍𝒍𝒏𝒏𝒃𝒃   Eq. 22.18 
 

  LOQy = limit of quantitation of the measurement (y-value) 
  𝒚𝒚𝒃𝒃𝒍𝒍𝒏𝒏𝒃𝒃�������  and sblnk are as above 
  kQ = multiplicative factor.  kQ = 10 for 10% RSD and kQ = 20 for 5% RSD 
 
Note that Equations 22.17 and 22.18 will be relevant for any type of measurement, even if a 
calibration plot is not used, as long as we can get a reasonable estimate of the mean blank 
signal and its standard deviation. 
 
In many cases involving calibration plots, it is more desirable to think about limits of detection 
and quantitation in terms of actual concentrations (the x-value) rather than the measured 
quantity (the y-value).  Since we know the relationship between x and y for a linear relationship 
(y=mx+b), we can derive expressions that give us LOD and LOQ in terms of concentration.  Note 
that in most instrumental methods, the instrument will be set to a measurement of zero using a 
blank solution, so we can assume that in the absence of significant drift, the intercept (b) is 
equal to the average blank measurement, 𝒚𝒚𝒃𝒃𝒍𝒍𝒏𝒏𝒃𝒃�������, or  
 
  𝒚𝒚 = 𝒍𝒍𝒙𝒙 + 𝒚𝒚𝒃𝒃𝒍𝒍𝒏𝒏𝒃𝒃�������    Eq. 22.19 
 

23 Long, GL and Winefordner, JD, “Limit of Detection: A Closer Look at the IUPAC Definition”, Anal. Chem., 55, 1983, 
712-724. 

699 
 

                                                           



The “y” in an LOD (or LOQ) calculation is the LODy (or LOQy) from Equation 22.17 (or 22.18), and 
the “x” would be the LODx (or LOQx), which is the limit of detection in terms of concentration: 
 
  𝒎𝒎𝑳𝑳𝑫𝑫𝒚𝒚  = 𝒍𝒍 ∙ 𝒎𝒎𝑳𝑳𝑫𝑫𝒙𝒙 + 𝒚𝒚𝒃𝒃𝒍𝒍𝒏𝒏𝒃𝒃�������   Eq. 22.20 
 
If we combine Eq. 22.17 and 22.20 (or 22.18 and the LOQ equivalent of 22.20), we can find our 
equations for limits of detection and quantitation in terms of concentration (Equations 22.21 
and 22.22): 
 
  𝒎𝒎𝑳𝑳𝑫𝑫𝒙𝒙  = 𝒃𝒃𝑫𝑫∙𝒔𝒔𝒃𝒃𝒍𝒍𝒏𝒏𝒃𝒃

𝒍𝒍
    Eq. 22.21 

  LODx = limit of detection of the concentration 
  sb = standard deviation of a set of blank or baseline measurements 
  kD = multiplicative factor.  kD = 3 at the 99.9% confidence level 
 
  𝒎𝒎𝑳𝑳𝑸𝑸𝒙𝒙  = 𝒃𝒃𝑸𝑸∙𝒔𝒔𝒃𝒃𝒍𝒍𝒏𝒏𝒃𝒃

𝒍𝒍
    Eq. 22.22 

  LOQx = limit of detection of the concentration 
  sb = standard deviation of a set of blank or baseline measurements 
  kQ = multiplicative factor.  kQ = 10 for 10% RSD and kQ = 20 for 5% RSD 
 
Exercise 22.18:  Demonstrate that Equations 22.21 and 22.22 can be derived from Equations 
22.17 and 22.18, respectively. 
 
Exercise 22.19:  Demonstrate that the units of LODx (and thus LOQx) are concentration units.  
Assume concentration is in units of molarity and the measurements are made in milliamps from 
an arbitrary detector. 
 
Exercise 22.20:  In the experiment represented in Exercise 22.17, eight blank measurements 
were made:  0.001, 0.000, 0.000, 0.001, 0.002, -0.001, 0.000, -0.001 AU.  Calculate the LODy, 
LOQy, LODx, and LOQx. 
 
Exercise 22.21: Consider your results from Exercise 22.19 and the data presented in Exercise 
22.17.  If you were presenting this data for publication, would you need to redo the calculations 
you did in Ex. 22.17?  Explain. 
 
It is often the case that we do not have available multiple blank measurements for a method 
involving a calibration plot.  In such a case, two alternatives have been proffered.  If, in doing 
the linear regression, an intercept is calculated, then we can substitute sb (standard deviation of 
the intercept) for sblnk in the equations presented above.  If we set the intercept to zero in the 
linear regression, we can use the sy (standard deviation of the y-estimate) in place of sblnk.  In 
both cases, we must expect that our estimates for LOD and LOQ will be higher than they would 
have been using the formal approach, but it is better to err on the side of caution. 
 
Exercise 22.22: Estimate LODx and LOQx for the data given in Spreadsheet 22.4. 
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