Chapter 5 Instructor's Manual

CHAPTER 5

5-1. Frequency dependent noise sources: flicker and environmental noise.

Frequency independent sources: thermal and shot noise.

- 5-2. (a) Thermal noise.
 - (b) Certain types of environmental noise.
 - (c) Thermal and shot noise.
- 5-3. 10^3 to 10^5 Hz and 10^6 to 10^7 Hz, Environmental noise is at a minimum in these regions (see Figure 5-3).
- 5-4. At the high impedance of a glass electrode, shielding is vital to minimize induced currents from power lines which can be amplified and can disturb the output.
- 5-5. (a) High-pass filters are used to remove low frequency flicker noise from higher frequency analytical signals.
 - (b) Low-pass filters are used to remove high frequency noise from dc analytical signals.
- 5-6. We estimate the maximum and theminimum in the recorded signal $(0.9 \times 10^{-15} \text{ A})$ to be 1.5×10^{-15} and $0.4 \times 10^{-15} \text{ A}$. The standard deviation of the signal is estimated to be one-fifth of the difference or $0.22 \times 10^{-15} \text{ A}$. Thus,

$$\frac{S}{N} = \frac{0.9 \times 10^{-15} \text{ A}}{0.22 \times 10^{-15} \text{ A}} = 4$$

Principles of Instrumental Analysis, 6th ed.

.

5-7. (a)

	A B		С		
1					
2	Problem 5-7				
3		Weighing	s		
4		1.003			
5		1.004			
6		1.001			
7		1.000			
8		1.005			
9		0.999			
10		1.001			
11		1.006			
12		1.007			
13	Mean	1.003			
14	Std. Dev.	0.002804			
15	RSD	0.002796			
16	S/N	357.6933			
17					
18	Spreadsheet Documentation				
19	Cell B13=AVERAGE(B4:B12)				
20	Cell B14=STDEV(B4:B12)				
21	Cell B15=B14/B13				
22	Cell B16=1/B15				

Hence, S/N = 358 for these 9 measurements

(b)
$$\frac{S}{N} = \frac{S_n}{N_n} \sqrt{n}$$
 (Equation 5-11). For the nine measurements,

$$358 = \frac{S_n}{N_n}\sqrt{9}$$

For the S/N to be 500 requires n_x measurements. That is,

$$500 = \frac{S_n}{N_n} \sqrt{n_x}$$

Dividing the second equation by the first gives, after squaring and rearranging,

$$n_x = \left(\frac{500}{358} \times 3\right)^2 = 17.6$$
 or 18 measurements

5-8. (a)

	A	В	С			
1						
2	Problem 5-8					
3		Voltages				
4		1.37				
5		1.84				
6		1.35				
7		1.47				
8		1.10				
9		1.73				
10		1.54				
11		1.08				
12	Mean	1.435				
13	Std. Dev.	0.270713				
14	RSD	0.18865				
15	S/N	5.30081				
16						
17	Spreadsheet Documentation					
18	Cell B12=AVERAGE(B4:B11)					
19	Cell B13=STDEV(B4:B11)					
20	Cell B14=B13/B12					
21	Cell B15=1/B					

Thus S/N = 5.3

(b) Proceeding as in Solution 5-7, we obtain

$$n_x = \left(\frac{10}{5.3} \times \sqrt{8}\right) = 28.5$$
 or 29 measurements

5-9.
$$\overline{v}_{\rm rms} = \sqrt{4kTR\Delta f} = \sqrt{4 \times 1.38 \times 10^{-23} \times 298 \times 1 \times 10^6 \times 1 \times 10^6} = 1.28 \times 10^{-4} \text{ V}$$

 $\overline{v}_{\rm rms} \propto \sqrt{\Delta f}$ So reducing Δf from 1 MHz to 100 Hz, means a reduction by a factor of $10^6/10^2 = 10^4$ which leads to a reduction in $\overline{v}_{\rm rms}$ of a factor of $\sqrt{10^4} = 100$.

- 5-10. To increase the *S*/*N* by a factor of 10 requires 10^2 more measurements. So n = 100.
- 5-11. The middle spectrum *S*/*N* is improved by a factor of $\sqrt{50} = 7.1$ over the top spectrum.

The bottom spectrum *S*/*N* is improved by a factor of $\sqrt{200} = 14.1$ over the top spectrum. The bottom spectrum is the result of 200/50 = 4 times as many scans so the S/N should be improved by a factor of $\sqrt{4} = 2$ over the middle spectrum

The magnitudes of the signals and the noise in the spectra in Figure 5-15 may be 5-12. estimated directly from the plots. The results from our estimates are given in the table below. Baselines for spectra A and D are taken from the flat retions on the right side of the figure. Noise is calculated from one-fifth of the peak-to-peak excursions of the signal.

	A_2	255	A_{425}	$A_{\rm b}({\rm peak})$	$A_{\rm b}({\rm valley})$	$A_{\rm b}({\rm mean})$
Spectrum A	0.550		0.580	0.080	-0.082	0.001
Spectrum D	1.125		1.150	0.620	0.581	0.600
-						
	S_{255}	S_{425}	$N = [A_{\rm b}({\rm peak}) - A_{\rm b}({\rm valley})]/5$		$(S/N)_{255}$	$(S/N)_{425}$
Spectrum A	0.549	0.579	0.0324		17	18
Spectrum D	0.525	0.550	0.0078		67	70

Note that the difference in S/N for the two peaks is due only to the difference in the peak heights.

So, at 255 nm, $(S/N)_D = 67/17(S/N)_A = 3.9(S/N)_A$; at 425 nm, $(S/N)_D = 79/18(S/N)_A = 3.9(S/N)_A$