Chapter 15 - Molecular Fluorescence Spectroscopy
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Figure 8.2 Basic setup for measuring luminescence.

Luminescence spectroscopy is an important technique used in a wide
range of applications including food science, water quality,
pharmaceuticals, nanotechnology and biochemistry.

The technique is extremely sensitive and femtomolar (fM) concentrations
of gas, solid and liguid analytes have been measured.



Fluorescence Spectrometer

Notice off-axis detection
of the luminesced light!

1. Xenon lamp 6. Excitation correction
2. Adjustable slits 7. Emission mon_ochromator Figure 8.11 Commercial fluorescence and

3. Excitation monochromator 8. Emission grating phosphorescence instrument (both time

4. Excitation grating 9. Detector resolved and steady state), including optical

5. Sample compartment layout.



Basic Design of a Simple Fluorometer
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Figure 15-4 Components of a fluorometer or a spectro-
fluorometer. :



Process of Excitation and Emission

Absorption of light - 10-° s and related to ¢

Vibrational relaxation — excess vibrational energy in solution
immediately lost in solution due to collisional deactivation, 10-12
S.

Internal conversion - intermolecular process by which a
molecule passes to a lower energy electronic state without
emission of light. Overlap of vibrational energy levels in two
electronic energy levels.

External conversion — deactivation of an excited electronic
state by interaction and energy transfer between the excited
molecule and solvent or other solutes.

Intersystem crossing — process in which spin of an excited
electron is reversed and change in multiplicity results. Most
common when vibrational manifold overlap exists and when the
molecule has a heavy atom substituent (e.g., Br, I).

Fluorescence and Phosphorescence - relaxation of an
excited state via light emission. Time scales range from 10 s to
100’s s.



Quantitative Aspects of Fluorescence
Measurements

F = 2.3dcbCP,

® = quantum efficiency = # molecules emitting/total # molecules excited
¢ (L/mol-cm) and b (cm) have their usual meanings
P, in incident radiant power density (watts/cm?)

Linear relationship, F = KC

Self-absorption and self-quenching cause negative deviations from
linearity (i.e., reduced fluorescence intensity).

® increases with lower temperature, increased structural rigidity, = —=*
transition, and can be affected by solvent type and pH.

Electron donating groups (NH,, OH) tend to enhance fluorescence while
electron withdrawing groups (Cl, COOH) tend to inhibit it.



Wavelength Selector
Monochromator — disperses light into its component wavelengths
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Figure 19-5 Czerny-Turner grating monochramator.

Trade-off between resolution and signal: the narrower the exit
slit, the greater the ability to resolve closely spaced at the

expense of decreased signal-to-noise ratio.



Performance Criteria of Monochromators

» Stray light rejection
» Resolving power R _ M
AL

» Light gathering power (1-10)

Lower the number, the f = %
better the light gathering
power

_ oy

> Linear dispersion D=
P N



Jablonski Diagram

The few molecules
that fluoresce do
so from S1 (v=0)
state.
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Potential Energy Diagram
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Quantum Yield

TABLE 8.1: Fluorophore

Quantum Yields

QUANTUM ¢’ —
FLUOROPHORE  YIELD, ¢ k + k
| f nr

Quinine sulfate | 0.59
Rhodamine 6G 0.91
Fluorescein 0.89
Anthracene 0.28
Oxazine 1 0.15

K,

k, = rate constant for fluorescence

............................................................... knr — Sum of Various non_radiative

From Wurth, C.; et al. Relative
and Absolute Determination of

Fluorescence Quantum Yields of

decay rate constants

Transparent Samples. Nature Protocols,

2013, 8, 1535-1550.

number of molecules fluorescing

number of molecules excited by photon absorption



Fluorescence Measurement

* In the fluorescence spectrum of a given molecule, an emission peak at 490 nm is
from S (v,) to S (v,). In the absorption spectrum, the peak is near 395 nm.

(a) Calculate the difference in energy betweenthe S and § states associated
with emission. Determine this energy in joules.

he 199%x107%
AE=—5=.—?~9——————-‘—’-’—-.4.06><10“9J
A 490%10”

We can also express the enérgy of this one photon in terms of the energy of
one mole of these same photons. Completing this conversion:

(a06x102 - —=—)(6.02x10" ph"t‘ms) L
photon mole mole

For a sense of scale, you may recall that bond energ1es or bond enthalples (for
gases) are on the order of tens to many hundreds of kJ/mole.

(b) Calculate the thermal energy imparted to the molecule as aresult ofthe
absorption to emission process. The thermal energy is the difference in energy
between the absorbed photon at 395 nm and the emitted photon at 490 nm.

- 1 1
Ea s —-Ecmfssion =hC =
’ . ( z'a_bs

=9.77x107" ]

1
- 1=1.99x107% m( - )
} ] 395X107°m . 490%107m

‘emission

- Note the subtle difference in how we have used the equation relating wavelength
and energy. In part (a), we found the energy difference between two energy states
from the wavelength associated with the transition. In part (b), we found the
difference between two energies, each of which has an associated wavelength.



Fluorescence Intensity
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Quenching

One way in which fluorescence can be a powerful tool to study the local
chemical environment around a molecule is through quenching.

One fluorophore transfers energy to a different type of molecule
(quenching) — reduced fluorescence. (robs energy from excited
molecule) O, is an example of a quencher.

One fluorphore transfers energy to the same unexcited molecule (self-
quenching)

Fo

F =1+ Kq [Q]

F, = fluorescence intensity without quencher

F = fluorescence intensity with quencher

K, = Stern-Volmer constant (quenching rate constant)

[Q] = quencher concentration



Broadband Light Sources
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Photon Detectors
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Figure 8.13 (A) Quantum efficiency as a
function of wavelength for several different
types of PMT photocathode materials and
(B) a Si CCD.



Laser-Induced Fluorescence
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