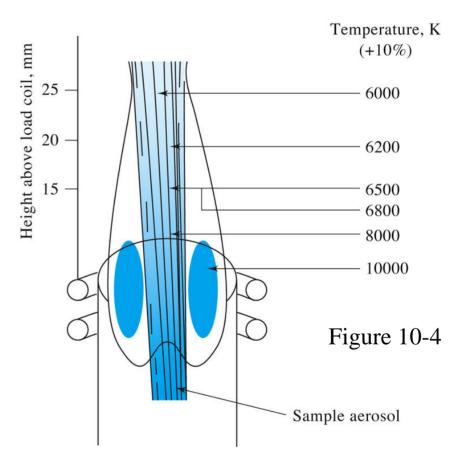

Chapter 10: Atomic Emission Spectrometry

Read: pp. 254 – &* * Problems: 10-2,5,6


- Excited-state atoms emit UV-visible line spectra that are useful for qualitative and quantitative analysis.
- Flame and plasma sources are commonly used for AES.
- Plasma sources offer several advantages:
 - Lower interelement interference due to high temperature
 - Good emission spectra are obtained for a single set of excitation conditions
 - Simultaneous detection of multiple elements
 - Improved detection figures of merit compared to flame AAS and AES

Inductively Coupled Plasma Source

Inductively Coupled Plasma Source

- High temperature
- Uniform temperature
- Inert environment (Ar)

Leads to more complete atomization and fewer chemical interferences. Lower detection limits and broader linear range than flame sources.

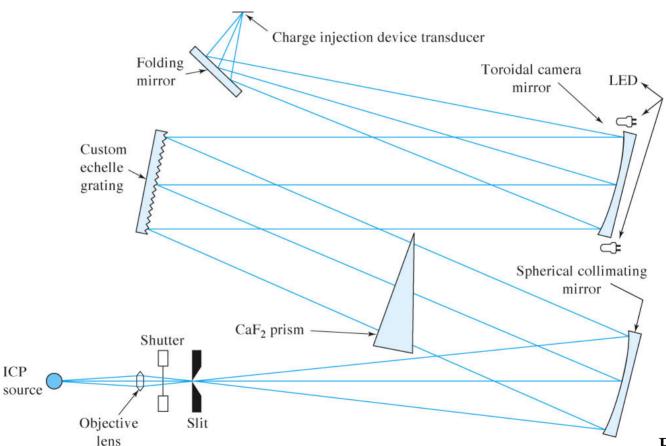
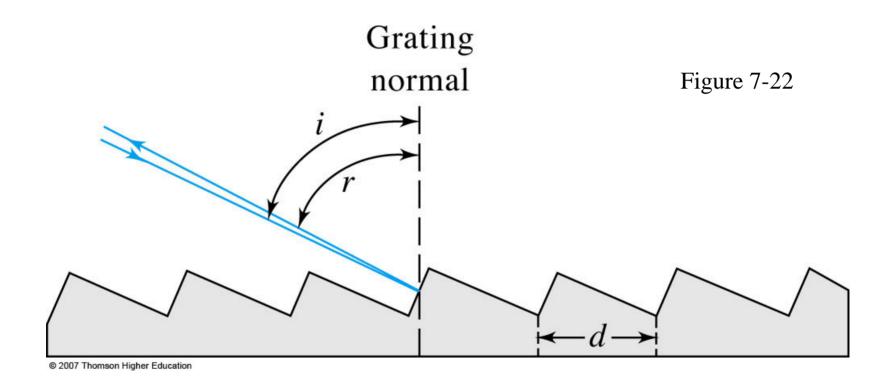
TABLE 10-1 Desirable Properties of an Emission Spectrometer

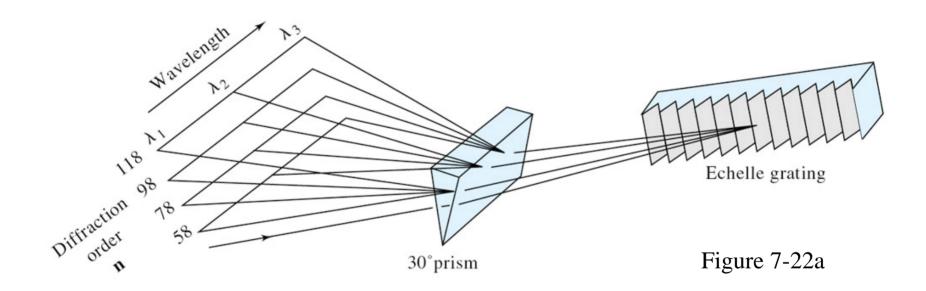
- 1. High resolution (0.01 nm or $\lambda/\Delta\lambda > 100,000$)
- 2. Rapid signal acquisition and recovery
- 3. Low stray light
- 4. Wide dynamic range ($>10^6$)
- 5. Accurate and precise wavelength identification and selection
- 6. Precise intensity readings (<1% relative standard deviation at $500 \times$ the detection limit)
- 7. High stability with respect to environmental changes
- 8. Easy background corrections
- 9. Computerized operation: readout, storage data manipulation, etc.

Plasma Emission Spectrometers

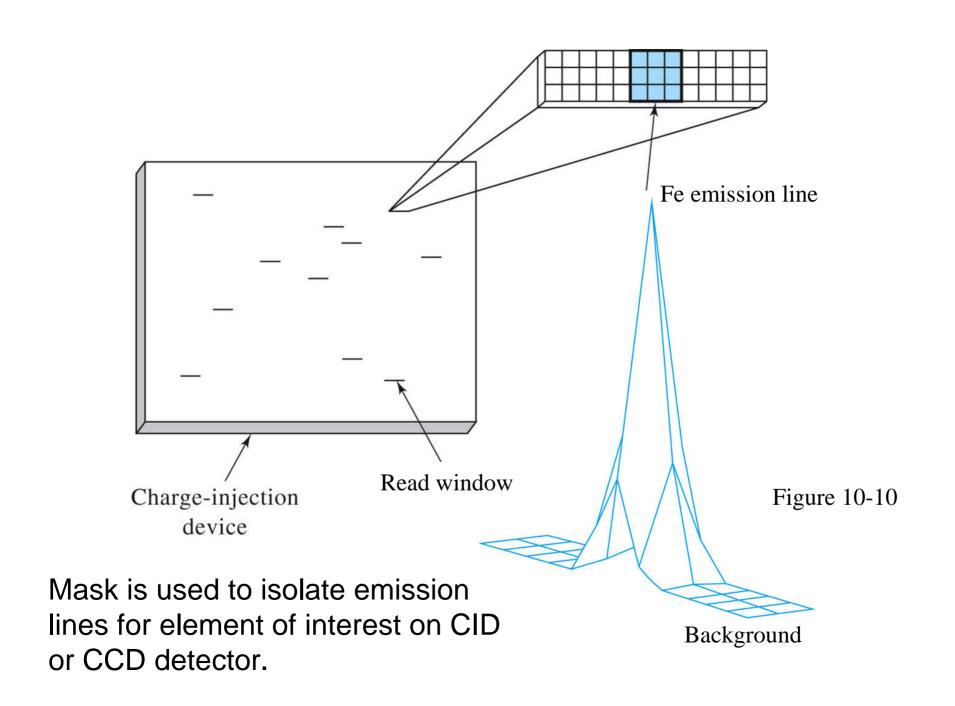
- 1. Sequential Spectrometers: one wavelength at a time
 - a. Slew-scanning (one PMT with two-speed linear scan)
 - b. Scanning Echelle (one PMT, two-dimensional scan)Typically used for 10 15 elements/sample (max)
- 2. Simultaneous Multichannel Spectrometers: multiwavelength
 - a. Polychromators (series of PMTs)
 - b. Spectrographs (two-dimensional CID or CCD) Typically used for 50 60 elements/sample (max)
- 3. Fourier-Transform Spectrometers: multiwavelength Expensive, not widely used.

A Typical Multichannel Spectrograph


Figure 10-9

Echelle Grating Monochromator



Grating spacing is coarse (d < 300 grooves/mm). Blaze angle is much larger than conventional grating and short side is used for reflection.

Echelle Grating Monochromator

Combination of echelle grating and prism disperses wavelengths in two dimensions. So multichannel detectors are common.

TABLE 9-3 Detection Limits (ng/mL)^a for Selected Elements

Ele- ment	AAS Flame	AAS Electro- thermal	AES Flame	AES ICP	AFS Flame
Al	30	0.1	5	0.2	5
As	200	0.5	_	2	15
Ca	1	0.25	0.1	0.0001	0.4
Cd	1	0.01	2000	0.07	0.1
Cr	4	0.03	5	0.08	0.6
Cu	2	0.05	10	0.04	0.2
Fe	6	0.25	50	0.09	0.3
Hg	500	5	_	_	5
Mg	0.2	0.002	5	0.003	0.3
Mn	2	0.01	_	0.01	1
Mo	5	0.5	100	0.2	8
Na	0.2	0.02	0.1	0.1	0.3
Ni	3	0.5	600	0.2	0.4
Pb	8	0.1	200	1	5
Sn	15	5	300	_	200
V	25	1	200	0.06	25
Zn	1	0.005	50000	0.1	0.1

TABLE 10-3 Comparison of Detection Limits for Several Atomic Spectral Methods

	Number of Elements Detected at Concentrations of					
Method	<1 ppb	1–10 ppb	11–100 ppb	101-500 ppb	>500 ppb	
ICP emission	9	32	14	6	0	
Flame atomic emission	4	12	19	6	19	
Flame atomic fluorescence	4	14	16	4	6	
Flame atomic absorption	1	14	25	3	14	

^{© 2007} Thomson Higher Education

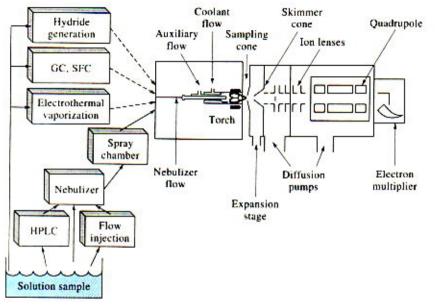


FIGURE 11-12 Schematic of an ICPMS system. Dotted lines show introduction of gaseous samples; solid lines show introduction of liquid samples, HPLC = high-performance liquid chromatography, SFC = supercritical fluid chromatography. (From N. P. Vela, L. K. Olson, and J. A. Caruso, *Anal. Chem.*, 1993, 65, 585A. Figure 1, p. 587A. Copyright 1993 American Chemical Society.)

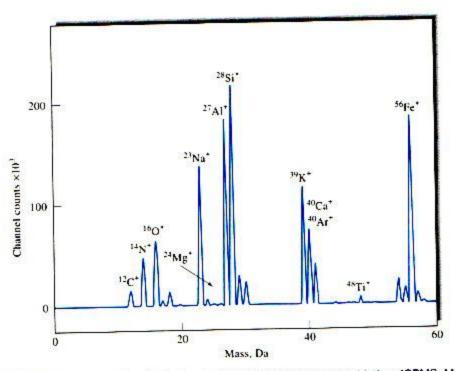


FIGURE 11-14 Spectrum of a standard rock sample obtained by laser ablation-ICPMS. Major components (%): Na, 5.2; Mg, 0.21; Al, 6.1; Si, 26.3; K, 5.3; Cu, 1.4; Ti, 0.18; Fe, 4.6. (From *Inorganic Mass Spectrometry*, F. Adams, R. Gijbek, and R. Van Grieken, eds., p. 297, New York: Wiley, 1988. With permission.)

Mass spectra are simpler and easier to interpret than emission spectra (100's-1000's lines). 90% of elements in table can be detected, measurement times of 10s per element, LODs are 0.1 to 10 ppb for many elements, and RSDs are 2-4%.