1. Consider the structure at right:
 (a) (1 pt) What is its formula? \(\text{C}_3\text{H}_6\text{Cl}_2 \)
 (b) (1 pt) …its IUPAC name? \(1,1\text{-dichloropropane} \)
 (c) (3 pts) Draw its three other isomers in the boxes below:

```
Cl Cl
1,2-dichloropropane

Cl Cl
1,3-dichloropropane

Cl Cl
2,2-dichloropropane
```

2. (4 pts) Pure water is known to have a pH of 7. Show how, from that information alone, you can calculate that the \(\text{pK}_a \) of water is 15.74. Remember that for any acid \(\text{H-A} \) (including HOH), the value of \(\text{K}_a = [\text{H}^+][\text{A}^-]/[\text{HA}] \), that \(\text{pH} = -\log_{10}[\text{H}^+] \), and that \(\text{pK}_a = -\log_{10}(\text{K}_a) \). Hint: consider the concentrations of species in this equilibrium:

\[
\text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{OH}^-
\]

\(\text{K}_a(\text{H}_2\text{O}) = \frac{[\text{H}^+][\text{OH}^-]}{[\text{H}_2\text{O}]} \)

Note: \(\text{OH}^- = \text{A}^- \) if \(\text{HOH} = \text{HA} \) so each \(\text{H}_2\text{O} \) dissociation gives one \(\text{H}^+ \) and one \(\text{OH}^- \) and \([\text{H}^+] = [\text{OH}^-] = 10^{-7} \text{ M} \), while \([\text{H}_2\text{O}] = 1000/18.0 = 55.5 \text{ M} \).

Then \(\text{K}_a = 10^{-7} \times 10^{-7}/55.5 = 1.80 \times 10^{-16} \text{ M} \)

and \(-\log_{10}(\text{K}_a) = -\log_{10}(1.80 \times 10^{-16}) = 15.74 \)

3. (6 pts) Among the structures at right, find and write in numbers for…
 (a) A compound with no dipole: \(4 \) or \(6 \)
 (b) An alcohol of formula \(\text{C}_5\text{H}_12\text{O} \): \(2 \)
 (c) A compound with at least one \(\text{sp}^2 \) hybridized \(\text{C} \) atom: \(5 \) or \(6 \)
 (d) A strained cycloalkane: \(4 \)
 (e) A structure that should be shown with a (+) charge: \(1 \)
 (f) Two compounds with the same empirical formulas: \(3 & 5 \) or \(4 & 6 \)

4. Consider the four structures at right.
 (a) (1 pts) All but one depict the same compound. Which is the unique one?
 Circle your answer: \(A \) \(B \) \(C \) \(D \)
 (b) (2 pts) The conformation in \(D \) is the same as which one of the others? \(A \) \(B \) \(C \)
 (c) (1 pt) For the two remaining Newman projections that do represent the same compound, are they conformations of the same energy? \(\text{Yes} \) \(\text{No} \)
 (d) (1 pts) If you answered “No” in (c), which is higher in energy? \(A \) \(B \) \(C \) \(\text{none} \)