1) Show proper arrow notation to show the movement of electrons that correspond to the following transformations:

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{O}^- \\
\text{Cl} & \quad \text{CH}_3
\end{align*} \rightarrow \quad \begin{align*}
\text{H}_3\text{C} & \quad \text{C} \quad \text{CH}_3 \\
\text{O}^- & \quad \text{Cl}^-
\end{align*}
\]

\[
\begin{align*}
\cdot & \quad + \quad \text{Br}_2 \\
\text{H} & \quad \text{CH}_3
\end{align*} \rightarrow \quad \begin{align*}
\text{Br} & \quad \text{H} \quad \text{CH}_3 \\
\cdot & \quad \text{Br}^-
\end{align*}
\]

\[
\begin{align*}
\text{H} & \quad \text{CH}_3 \\
\text{CH}_3 & \quad + \quad \cdot \text{OH}
\end{align*} \rightarrow \quad \begin{align*}
\text{H} & \quad \text{CH}_3 \\
\text{CH}_3 & \quad + \quad \text{H}_2\text{O}
\end{align*}
\]
2) Given each value, determine whether the starting material or product is favored at equilibrium:

 a) \(K_{\text{eq}} = 22 \)
 b) \(\Delta G^\circ = -32 \text{ kca/mol} \)
 c) \(\Delta G^\circ = 11 \text{ kca/mol} \)
 d) \(\Delta H^\circ = 113 \text{ kca/mol} \)
 e) \(\Delta S = -3 \text{ ca/mol*K} \)
 f) \(K_{\text{eq}} = 0.10 \)

3) Draw an energy diagram for the following reaction. Label the axes, the starting material, product, transition state, \(\Delta H^\circ \) and \(E_a \).

A two-step reaction, \(A \rightarrow B \rightarrow C \) in which the relative energy of the compounds is \(A < B < C \) and the step \(B \rightarrow C \) is the rate determining step.
4) Which of the compounds below will react fastest with NH₃?

A: \(\text{BrCH}_2 \)
B: \(\text{ICH}_2 \)
C: \(\text{FCH}_2 \)
D: \(\text{ClCH}_2 \)

5) Which of the reactions below will give the highest yield of amine (product)?

X: \(\text{C}_7\text{H}_8\text{Br} + \text{NH}_3 \rightarrow \text{C}_7\text{H}_8\text{NH}_2 \)
Y: \(\text{C}_7\text{H}_8\text{Br} + \text{NH}_3 \rightarrow \text{C}_7\text{H}_8\text{NH}_2 \)
Z: \(\text{C}_7\text{H}_8\text{Br} + \text{NH}_3 \rightarrow \text{C}_7\text{H}_8\text{NH}_2 \)

6) Mark each of the following alkyl halides as primary, secondary or tertiary:

- \(\text{BrCH}_2 \)
- \(\text{ICH}_2 \)
- \(\text{FCH}_2 \)
- \(\text{ClCH}_2 \)
7) Answer the following questions regarding the reaction below:

\[
\text{OH} + \text{Br} \quad \rightarrow \quad \text{O} \quad \quad \text{+ \quad HBr}
\]

a) What type of reaction is this?

b) What is the rate equation for this reaction?

c) What happens to the rate of reaction when the [alcohol] is doubled?

d) What happens to the rate of reaction when the [alkyl halide] is halved?

8) In each pair of molecules circle the one with the bond that is easiest to break homolytically (see Table 6.2 on p. 207 of the Smith text for help):

- H Cl
- OH F
- H H
- Br I
- H O H H O
8) Complete the following reactions with the MAJOR product(s):

1.

 \[
 \text{Br} \quad \text{NH}_3
 \]

2.

 \[
 \text{Cl} \quad \text{H}_2\text{S}
 \]

3.

 \[
 \text{I} \quad \text{NaOH}
 \]

4.

 \[
 \text{Br} \quad \text{NaO}^+\text{fBu}
 \]

5.

 \[
 \text{Cl} \quad \text{Na}^-\text{CN}
 \]

6.

 \[
 \text{H} \quad \text{Na}^+\text{+NH}_2
 \]