CEM 251 (Sections 101-104)
Midterm #2
June 25, 2010

Name: ___________________________
Section: _______

PID: ___________________________
TA: ____________

This is a closed book and note examination. If boxes are provided for your answer, only what is written in the boxes will be graded. You have 50 minutes to complete the test.

<table>
<thead>
<tr>
<th>Page</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 101</th>
<th>M/W 10:20 – 11:10 AM</th>
<th>Wynter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 102</td>
<td>M/W 1:50 – 2:40 PM</td>
<td>Wynter</td>
</tr>
<tr>
<td>Section 103</td>
<td>Tu/Th 10:20 – 11:10 AM</td>
<td>Karrie</td>
</tr>
<tr>
<td>Section 104</td>
<td>Tu/Th 1:50 – 2:40 PM</td>
<td>Karrie</td>
</tr>
</tbody>
</table>
1. Name or draw the structures for the following molecular compounds including stereochemistry when possible. (2 pts each):

- ![Cyclic structure](image1.png)
- ![Alcohol structure](image2.png)
- (Z)-3-bromo-4-propyl-3-heptane
- 2,3,4-trimethyl-1-decene oxide
2. Rate the relative nucleophilicity from greatest to least (1-4, 1 being the most nucleophilic). (1 pt each):

\[\text{Nucleophiles} \]

3. Rate the relative basicity from least to greatest (1-4, 1 being the least basic). (1 pt each):

\[\text{Basics} \]

4. Label each C-C double bond as cis (C), trans (T), E, or Z. (1 pt each)

\[\text{Double Bonds} \]
5. Draw each of the monochlorinated products of the following reaction (6 pts).

\[
\begin{array}{c}
\text{Cl}_2, \text{hv} \\
\end{array}
\]

6. Draw the monobromination products for the following reaction (6 pts).

\[
\begin{array}{c}
\text{NBS, hv} \\
\end{array}
\]

Bonus: Draw the two resonance hybrids that lead to the above products (4 pts).
7. Fill in the boxes with the appropriate reagents, products, and responses (2 pts each).

\[\text{alkyne} \rightarrow \text{Br} \xrightarrow{\text{KOH}} \text{alkene} \rightarrow \text{most stable alkane} \xrightarrow{1. \text{O}_3, 2. \text{S(CH}_3)_2} \]

\[\text{Show Stereochemistry} \]

\[\text{Na, NH}_3 \rightarrow \text{OH} \xrightarrow{\text{H}_2\text{O}^+} \text{acid} \rightarrow \text{anion} \xrightarrow{\text{CrO}_3, \text{H}_2\text{SO}_4, \text{H}_2\text{C}} \text{product} \]

Bonus: Name this reaction.
8. Draw products of the following reactions after 1,2-alkyl or 1,2-hydride shifts. (2 pt each) Then, identify the type of 1,2-shift (1 pt each).

\[
\begin{align*}
\text{H}_2\text{SO}_4 & \quad \rightarrow \quad \text{H}_2\text{O} \\
\text{Br} & \quad \rightarrow \quad \text{HO} \\
\text{OH} & \quad \rightarrow \quad \text{ring expanded product}
\end{align*}
\]

9. Indicate the correct product or diethyl tartrate (DET) used in the reaction where necessary. (2 pts)

\[
\begin{align*}
\text{OH} & \quad \rightarrow \quad \text{Ti(OPr)₄} \quad \rightarrow \quad \text{BuOOG} \\
\text{OH} & \quad \rightarrow \quad \text{Ti(OPr)₄} \quad \rightarrow \quad \text{BuOOG} \\
\text{OH} & \quad \rightarrow \quad \text{Ti(OPr)₄} \quad \rightarrow \quad \text{BuOOG} \\
\end{align*}
\]
10. Fill in the boxes with the appropriate products (2 pts each) and indicate whether the reaction is addition, substitution, elimination, oxidation, or reduction. (1 pts each) Though a reaction may fit more than one classification, only put one.

\[
\begin{align*}
\text{1. LiAlH}_4 & \quad \text{2. H}_2\text{O}^+ \\
\text{Lindlar's cat.} & \\
\text{1. OsCl}_4 & \quad \text{2. Na}^+\text{HSO}_3^- \\
& \quad \text{H}_2\text{O} \\
\text{1. BH}_3 & \quad \text{2. NaOH} \\
& \quad \text{H}_2\text{O}_2 \quad \text{H}_2\text{O} \\
\text{HO} & \\
& \quad \text{H}_2\text{SO}_4 \\
\text{POCl}_3 &
\end{align*}
\]
11. Draw the mechanism for the following reaction (6 pts).
12. Devise a synthesis for the following molecule using the given starting material. (6 pts)

![Molecular structure](image)

Bonus: How many RMB are in the product? (2pts)