The tallest peak in the mass spectrum is called the base peak. For methane the base peak is also the M peak (molecular ion), although this is usually not the case. Though most C atoms have an atomic mass of 12, 1.1% have a mass of 13. Thus, $^{13}\text{CH}_4$ is responsible for the peak at $m/z = 17$. This is called the M + 1 peak.
Absorption of IR Light

- Absorption of IR light causes changes in the vibrational motions of a molecule.
- The different vibrational modes available to a molecule include stretching and bending modes.

- The vibrational modes of a molecule are quantized, so they occur only at specific frequencies which correspond to the frequency of IR light.
Bond Stretching and Bending

• When the frequency of IR light matches the frequency of a particular vibrational mode, the IR light is absorbed, causing the amplitude of the particular bond stretch or bond bend to increase.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

When the \(\nu \) of IR light = the \(\nu \) of bond stretching, IR light is absorbed.

\[
\text{The bond stretches further.} \\
\text{The amplitude increases.}
\]

• Different kinds of bonds vibrate at different frequencies, so they absorb different frequencies of IR light.

• IR spectroscopy distinguishes between the different kinds of bonds in a molecule, so it is possible to determine the functional groups present.
Characteristics of an IR Spectrum

- In an IR spectrometer, light passes through a sample.
- Frequencies that match the vibrational frequencies are absorbed, and the remaining light is transmitted to a detector.
- An IR spectrum is a plot of the amount of transmitted light versus its wavenumber.
- Most bonds in organic molecules absorb in the region of 4000 cm$^{-1}$ to 400 cm$^{-1}$.
Regions of an IR Spectrum

• The IR spectrum is divided into two regions: the functional group region (at $\geq 1500 \text{ cm}^{-1}$), and the fingerprint region (at $< 1500 \text{ cm}^{-1}$).

Figure 13.9

- A and B show peaks in the same regions for their C=O group and sp^3 hybridized C–H bonds.
- A and B are different compounds, so their fingerprint regions are quite different.
Four Regions of an IR Spectrum

- Bonds absorb in four predictable regions of an IR spectrum.

Figure 13.11

<table>
<thead>
<tr>
<th>Increasing wavenumber</th>
<th>Increasing energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonds to hydrogen</td>
<td>C–H</td>
</tr>
<tr>
<td></td>
<td>O–H</td>
</tr>
<tr>
<td></td>
<td>N–H</td>
</tr>
<tr>
<td>Triple bonds</td>
<td>C≡C</td>
</tr>
<tr>
<td></td>
<td>C≡N</td>
</tr>
<tr>
<td>Double bonds</td>
<td>C=O</td>
</tr>
<tr>
<td></td>
<td>C≡N</td>
</tr>
<tr>
<td>Single bonds</td>
<td>C–C</td>
</tr>
<tr>
<td></td>
<td>C–O</td>
</tr>
<tr>
<td></td>
<td>C–N</td>
</tr>
<tr>
<td></td>
<td>C–X</td>
</tr>
</tbody>
</table>

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Table 13.2 Important IR Absorptions

<table>
<thead>
<tr>
<th>Bond type</th>
<th>Approximate $\tilde{\nu}$ (cm$^{-1}$)</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>O–H</td>
<td>3600–3200</td>
<td>strong, broad</td>
</tr>
<tr>
<td>N–H</td>
<td>3500–3200</td>
<td>medium</td>
</tr>
<tr>
<td>C–H</td>
<td>~3000</td>
<td></td>
</tr>
<tr>
<td>\cdot C$_{sp}^3$–H</td>
<td>3000–2850</td>
<td>strong</td>
</tr>
<tr>
<td>\cdot C$_{sp}^2$–H</td>
<td>3150–3000</td>
<td>medium</td>
</tr>
<tr>
<td>\cdot C$_{sp}$–H</td>
<td>3300</td>
<td>medium</td>
</tr>
<tr>
<td>C≡C</td>
<td>2250</td>
<td>medium</td>
</tr>
<tr>
<td>C≡N</td>
<td>2250</td>
<td>medium</td>
</tr>
<tr>
<td>C=O</td>
<td>1800–1650 (often ~1700)</td>
<td>strong</td>
</tr>
<tr>
<td>C=C</td>
<td>1650</td>
<td>medium</td>
</tr>
<tr>
<td></td>
<td>1600, 1500</td>
<td>medium</td>
</tr>
</tbody>
</table>
IR Spectrum of 2-Butanol

- The OH group of the alcohol shows a strong absorption at 3600-3200 cm$^{-1}$.
- The peak at ~ 3000 cm$^{-1}$ is due to sp^3 hybridized C–H bonds.

\[\text{2-Butanol CH}_3\text{CH(OH)CH}_2\text{CH}_3\]
IR Spectrum of 2-Butanone

- The C=O group in the ketone shows a strong absorption at ~ 1700 cm$^{-1}$.
- The peak at ~ 3000 cm$^{-1}$ is due to sp^3 hybridized C–H bonds.
The N–H bonds in the amine give rise to two weak absorptions at 3300 and 3400 cm\(^{-1}\).
The amide exhibits absorptions above 1500 cm\(^{-1}\) for both its N–H and C=O groups: N–H (two peaks) at 3200 and 3400 cm\(^{-1}\); C=O at 1660 cm\(^{-1}\).
IR Spectrum of Octanenitrile

- The $\text{C}=\text{N}$ of the nitrile absorbs in the triple bond region at $\sim 2250 \text{ cm}^{-1}$.
Nuclear Magnetic Resonance Spectroscopy

• Nuclear magnetic resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by identifying carbon-hydrogen frameworks within molecules.

• Two common types of NMR spectroscopy are used to characterize organic structure:
 • 1H NMR is used to determine the type and number of H atoms in a molecule; and
 • 13C NMR is used to determine the type of carbon atoms in a molecule.

• The source of energy in NMR is radio waves which have long wavelengths, and thus low energy and frequency.

• When low-energy radio waves interact with a molecule, they can change the nuclear spins of some elements, including 1H and 13C.
Magnetic Fields in NMR

• When a charged particle such as a proton spins on its axis, it creates a magnetic field, causing the nucleus to act like a tiny bar magnet.
• Normally, these tiny bar magnets are randomly oriented in space.
• However, in the presence of a magnetic field \(B_0 \), they are oriented with or against this applied field.
• More nuclei are oriented with the applied field because this arrangement is lower in energy.
• The energy difference between these two states is very small (<0.1 cal).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electron Environment

• The frequency at which a particular proton absorbs is determined by its electronic environment.
• Protons in different environments absorb at slightly different frequencies, so they are distinguishable by NMR.
• The size of the magnetic field generated by the electrons around a proton determines where it absorbs.
• Modern NMR spectrometers use a constant magnetic field strength B_0, and then a narrow range of frequencies is applied to achieve the resonance of all protons.
• Only nuclei that contain odd mass numbers (such as 1H, 13C, 19F, and 31P) or odd atomic numbers (such as 2H and 14N) give rise to NMR signals.
An NMR spectrum is a plot of the intensity of a peak against its chemical shift, measured in parts per million (ppm).

Sample 1H NMR spectrum
$\text{CH}_3\text{OC(CH}_3\text{)}_3$

- **Chemical Shift:**
 - **Upfield (δ > 0):** Shifts to lower frequency (to the left)
 - **Downfield (δ < 0):** Shifts to higher frequency (to the right)

- **TMS (Tri-Methyl Silane):** Internal reference point

- **Increasing δ (ppm):**
 - As δ increases, the signal moves to lower frequency.
 - Increasing ν (frequency) for a fixed δ.

- **(CH}_3\text{)}_3\text{C}^-$
 - Peak at lower δ
 - Higher frequency shift

- **CH$_3$O$^-$**
 - Peak at higher δ
 - Lower frequency shift

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display
Interpreting NMR Spectra

• NMR absorptions generally appear as sharp peaks.
• Most protons absorb between 0-10 ppm.
• The terms “upfield” and “downfield” describe the relative location of peaks.
 • Upfield means to the right (higher magnetic field).
 • Downfield means to the left (lower magnetic field).
• An external standard, (CH₃)₄Si (tetramethylsilane) is added to the sample tube prior to the NMR measurement.
• NMR absorptions are measured relative to the position of a reference peak at 0 ppm on the δ scale due to tetramethylsilane (TMS).
• TMS is a volatile inert compound that gives a single peak upfield from typical NMR absorptions.
Structural Information from Features of a 1H NMR Spectrum

- **Number of signals**: indicates the number of different types of hydrogen in a molecule.
- **Position of signals**: indicates what types of hydrogen the molecule contains.
- **Intensity of signals**: indicates the relative amounts (how many) of each kind of hydrogen in the molecule.
- **Spin-spin splitting of signals**: gives further information of the neighboring environment for the various hydrogens in the molecule.
Number of Signals in ^1H NMR

- The number of NMR signals equals the number of different types of protons in a compound.
- Protons in different environments give different NMR signals.
- Equivalent protons give the same NMR signal.

![Chemical structures and NMR signals]

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Number of ^1H NMR Signals—Examples

Figure 14.2

- To rigorously determine if two hydrogens in a molecule are the same:
 - replace each hydrogen by a different atom, Z (e.g., Cl) and
 - determine if the resulting compound is the same or different.
- For example, replacement of each methyl hydrogen at C_1 and C_5 in pentane produces 1-chloropentane, replacement of each methylene hydrogen at C_2 and C_4 leads to 2-chloropentane and at C_3 forms 3-chloropentane.
Shielding and Signal Position

- The H_b protons are deshielded because they are closer to the electronegative Cl atom, so they absorb downfield from H_a.

- Because F is more electronegative than Br, the H_b protons are more deshielded than the H_a protons and absorb farther downfield.

- The larger number of electronegative Cl atoms (two versus one) deshields H_b more than H_a, so it absorbs downfield from H_a.
Characteristic Chemical Shifts

- Protons in a given environment absorb in a predictable region in an NMR spectrum.

Table 14.1 Characteristic Chemical Shifts of Common Types of Protons

<table>
<thead>
<tr>
<th>Type of proton</th>
<th>Chemical shift (ppm)</th>
<th>Type of proton</th>
<th>Chemical shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(sp^3)C-H</td>
<td>0.9–2</td>
<td>(sp^2)C=H</td>
<td>4.5–6</td>
</tr>
<tr>
<td>RCH(_3)</td>
<td>~0.9</td>
<td>(C=O)</td>
<td>6.5–8</td>
</tr>
<tr>
<td>R(_2)CH(_2)</td>
<td>~1.3</td>
<td>(RCO)</td>
<td>9–10</td>
</tr>
<tr>
<td>RCH(_2)</td>
<td>~1.7</td>
<td>(RCOOH)</td>
<td>10–12</td>
</tr>
<tr>
<td>(Z=C-C-H)</td>
<td>1.5–2.5</td>
<td>(HO-) or (RO-H)</td>
<td>1–5</td>
</tr>
<tr>
<td>(Z = C, O, N)</td>
<td></td>
<td>(R-N-H)</td>
<td></td>
</tr>
<tr>
<td>(Z = N, O, X)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of π Electron and Chemical Shift

Table 14.2 Effect of π Electrons on Chemical Shift Values

<table>
<thead>
<tr>
<th>Proton type</th>
<th>Effect</th>
<th>Chemical shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>highly deshielded</td>
<td>6.5–8</td>
</tr>
<tr>
<td></td>
<td>deshielded</td>
<td>4.5–6</td>
</tr>
<tr>
<td></td>
<td>shielded</td>
<td>~2.5</td>
</tr>
</tbody>
</table>
Regions in the 1H NMR Spectrum

Figure 14.5

- Shielded protons absorb at lower chemical shift (to the right).
- Deshielded protons absorb at higher chemical shift (to the left).
1H NMR Integration

- Modern NMR spectrometers automatically calculate and plot the value of each integral in arbitrary units.
- The ratio of integrals to one another gives the ratio of absorbing protons in a spectrum.
- Note that this gives a ratio, and not the absolute number, of absorbing protons.
\(^1\text{H} \text{NMR—Spin-Spin Splitting}\)

- The spectra up to this point have been limited to single absorptions called singlets.
- Often signals for different protons are split into more than one peak.
The frequency difference, measured in Hz between two peaks of the doublet is called the **coupling constant, J**.

- **With no adjacent H’s:** The absorbing H’s feel only one magnetic field.
- **With one adjacent H:** The absorbing H’s feel two different fields, so they absorb at two different frequencies.

How a doublet arises

- The NMR signal is a single peak.
- The NMR signal is split into a doublet.

- One adjacent proton splits an NMR signal into a doublet.
Splitting Patterns

• Three general rules describe the splitting patterns commonly seen in the 1H NMR spectra of organic compounds.

 [1] Equivalent protons do not split each other’s signals.

 [2] A set of n nonequivalent protons splits the signal of a nearby proton into $n + 1$ peaks.

 [3] Splitting is observed for nonequivalent protons on the same carbon or adjacent carbons.

H_a and H_b are on the same carbon. H_a and H_b are on adjacent carbons.
Proximity and Splitting

Splitting is not generally observed between protons separated by more than three σ bonds.

2-butanoine
H_a and H_b are separated by four σ bonds.

no splitting between H_a and H_b

ethyl methyl ether
H_a and H_b are separated by four σ bonds.

no splitting between H_a and H_b
1H NMR of 2-Bromopropane

- The 6 H_a protons are split by the one H_b proton to give a doublet.
- The H_b proton is split by 6 equivalent H_a protons to yield a septet.
$^1\text{H NMR of 1-Bromopropane}$

- Since H_a and H_c are not equivalent to each other, we cannot always add them together and use the $n + 1$ rule.
- However, since the coupling constants, J_{ab} and J_{bc}, are very similar, the signal for H_b is a sextet (follows the $n + 1$ rule).

Figure 14.8
1H NMR of OH Protons

- Under usual conditions, an OH proton does not split the NMR signal of adjacent protons.
- The signal due to an OH proton is not split by adjacent protons.

Figure 14.12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Protons on Benzene Rings

• Benzene has six equivalent deshielded protons and exhibits a single peak in its 1H NMR spectrum at 7.27 ppm.

• Monosubstituted benzenes contain five deshielded protons that are no longer equivalent, and the appearance of these signals is highly variable, depending on the identity of Z.

The appearance of the signals in the 6.5–8 ppm region of the 1H NMR spectrum depends on the identity of Z in C$_6$H$_5$Z.
HOW TO Use 1H NMR Data to Determine a Structure

Example Using its 1H NMR spectrum, determine the structure of an unknown compound X that has molecular formula $C_4H_8O_2$ and contains a C=O absorption in its IR spectrum.

<table>
<thead>
<tr>
<th>absorption</th>
<th>ppm</th>
<th>integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A] triplet</td>
<td>1.1</td>
<td>15</td>
</tr>
<tr>
<td>[B] quartet</td>
<td>2.3</td>
<td>11</td>
</tr>
<tr>
<td>[C] singlet</td>
<td>3.7</td>
<td>14</td>
</tr>
</tbody>
</table>

Step [1] Determine the number of different kinds of protons.

- The number of NMR signals equals the number of different types of protons.
- This molecule has three NMR signals ([A], [B], and [C]) and therefore three types of protons (H_a, H_b, and H_c).
$^1\text{H NMR—Structure Determination, continued}$

Step [2] Use the integration data to determine the number of H atoms giving rise to each signal (Section 14.5).

- Total number of integration units: $14 + 11 + 15 = 40$ units
- Total number of protons = 8
- Divide: 40 units/8 protons = 5 units per proton
- Then, divide each integration value by this answer (5 units per proton) and round to the nearest whole number.

$$\frac{15}{5} = 3 \text{ } H_a \text{ protons} \quad \frac{11}{5} = 2.2 \approx 2 \text{ } H_b \text{ protons} \quad \frac{14}{5} = 2.8 \approx 3 \text{ } H_c \text{ protons}$$

- Signal [A]: Three equivalent H’s usually means a CH$_3$ group.
- Signal [B]: Two equivalent H’s usually means a CH$_2$ group.
- Signal [C]: Three equivalent H’s usually means a CH$_3$ group.
1H NMR—Structure Determination, continued

Step [3] Use individual splitting patterns to determine what carbon atoms are bonded to each other.

- Start with the singlets. Signal [C] is due to a CH₃ group with no adjacent nonequivalent H atoms. Possible structures include:

\[
\text{CH}_3\text{O} \quad \text{or} \quad \text{CH}_3\text{C} \quad \text{or} \quad \text{CH}_3\text{C}
\]

- Because signal [A] is a triplet, there must be 2 H's (CH₂ group) on the adjacent carbon.
- Because signal [B] is a quartet, there must be 3 H's (CH₃ group) on the adjacent carbon.
- This information suggests that X has an ethyl group \(\text{CH}_3\text{CH}_2^- \).

To summarize, X contains CH₃ −, CH₃CH₂ −, and C = O (from the IR). Comparing these atoms with the molecular formula shows that one O atom is missing. Because O atoms do not absorb in a 1H NMR spectrum, their presence can only be inferred by examining the chemical shift of protons near them. O atoms are more electronegative than C, thus deshielding nearby protons, and shifting their absorption downfield.
Step [4] Use chemical shift data to complete the structure.

- Put the structure together in a manner that preserves the splitting data and is consistent with the reported chemical shifts.
- In this example, two isomeric structures (A and B) are possible for X considering the splitting data only:

```
  Structural pieces
   CH₃    O
    Hₖ     
   CH₃CH₂ ———
    Hₐ  Hₗ

  Possible structures
   CH₂CH₂  OCH₃
    Hₐ       Hₗ
  or
   CH₃  OCH₂CH₃
    Hₖ       Hₗ
```

- Chemical shift information distinguishes the two possibilities. The electronegative O atom deshields adjacent H’s, shifting them downfield between 3 and 4 ppm. If A is the correct structure, the singlet due to the CH₃ group (Hₖ) should occur downfield, whereas if B is the correct structure, the quartet due to the CH₂ group (Hₗ) should occur downfield.
- Because the NMR of X has a singlet (not a quartet) at 3.7, A is the correct structure.
\(^{13}\text{C}\) NMR Spectrum Example

- \(^{13}\text{C}\) Spectra are easier to analyze than \(^{1}\text{H}\) spectra because the signals are not split.
- Each type of carbon atom appears as a single peak.