Nuclear Magnetic Resonance Spectroscopy (NMR)

• Spectrum represents the different interactions of **stereochemically different** protons (\(^1\)H) with the applied magnetic field.

• We will focus on \(^1\)H NMR (proton, H\(^+\))

• **4 general rules for \(^1\)H NMR spectra**

 1. Only stereochemically different \(^1\)Hs give different signals.

 ![Diagram](image)

 CH\(_3\)CH\(_2\)-Cl
 Different H
 Different NMR signal

 CH\(_3\)CH\(_2\)CH\(_2\)CH\(_3\)
 Same H, symmetric
 Different H
 Different NMR signal

 2. Area covered under the signal is proportional to the number of \(^1\)Hs causing the signal and is usually represented by integrals.

 ![Diagram](image)

 1
 2
 3

 6 5 4 3 2 1 0

 PPM

 3. The **Chemical Shift** (where on spectrum each peak appears) depends on the “chemical environment” of each proton. (see above picture)

 a. \(^1\)Hs close to electronegative atoms (O, N, X (halogen)) or aromatics shift to the left (deshielded, downfield shifted)

 b. The larger the number of \(^1\)Hs on the same carbon the more to the right (shielded, upfield shifted) the NMR signal is.
4. The multiplicity of the NMR peak depends on the number of 1Hs on neighboring carbons, NOT the same carbon. 1Hs attached to **adjacent carbons** split each other into:

$$\text{(n+1) peaks}$$

\[n = \text{number of } ^1\text{Hs on adjacent carbons} \]

\[\text{not the same C} \]

![NMR spectrum diagram](image)

a. Exchangeable, acidic 1H (-OH, NH$_2$) DO NOT split 1Hs on adjacent carbons and show on the spectrum as broad singlets.

a.

![Exchangeable, acidic H diagram](image)

b. Identical Hs symmetric q (quartet) [3+1]

b.

![Identical Hs symmetric diagram](image)
b. Only **non identical** \(^1\)Hs split each other.

The shape/relative intensity of the peaks follows the algorithm of **Pascal’s Triangle**:

Pascal's Triangle

\[
\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 3 & 6 & 10 & 10 & 5 \\
1 & 4 & 10 & 10 & 5 & 1 \\
\end{array}
\]

- Calculating the degree of unsaturation for a compound (number of RDBs, Rings and Double Bonds) when the molecular formula is known.

\[
\text{#RDBs} = \frac{2n + 2 - \text{#Hs} - \text{#Halides} + \text{# N atoms}}{2}
\]

\(n = \text{# Cs}\) (Oxidens do not participate in this equation and can be ignored when RDBs are calculated)

i.e. \(\text{C}_9\text{H}_9\text{OCl}\) : \(\text{RDBs} = (2\times9 + 2 - 9 - 1)/2 = 5\)