Chapter 13

Mass Spectrometry and Infrared Spectroscopy
Overview of Mass Spectrometry

- **Mass spectrometry** is a technique used for measuring the molecular weight, which can be helpful in determining the molecular formula of an organic compound.

- In one type of mass spectrometer, a molecule is ionized by bombardment with a beam of high-energy electrons.

- The energy of the electrons is ~ 1600 kcal (or 70 eV).

- Since it takes ~ 100 kcal of energy to cleave a typical σ bond, 1600 kcal is an enormous amount of energy to come into contact with a molecule.

- The electron beam ionizes the molecule by causing it to eject an electron.
In a mass spectrometer, a sample is vaporized and bombarded by a beam of electrons to form an unstable radical cation, which then decomposes to smaller fragments. The positively charged ions are accelerated toward a negatively charged plate, and then passed through a curved analyzer tube in a magnetic field, where they are deflected by different amounts depending on their ratio of mass to charge (m/z). A mass spectrum plots the intensity of each ion versus its m/z ratio.
When the electron beam ionizes the molecule, the species that is formed is called a **radical cation**, and symbolized as \(\text{M}^{+\cdot} \).

The radical cation \(\text{M}^{+\cdot} \) is called the **molecular ion** or **parent ion**.

The mass of \(\text{M}^{+\cdot} \) represents the molecular weight of \(\text{M} \).

Because \(\text{M} \) is unstable, it decomposes to form fragments of radicals and cations that have a lower molecular weight than \(\text{M}^{+\cdot} \).

A mass spectrum is a plot of the amount of each cation (its relative abundance) versus its **mass-to-charge ratio** \((m/z, \text{where } m \text{ is mass, and } z \text{ is charge}) \).
The tallest peak in the mass spectrum is called the base peak.

For methane the base peak is also the M peak (molecular ion), although this is usually not the case.

Though most C atoms have an atomic mass of 12, 1.1% have a mass of 13.

Thus, $^{13}\text{CH}_4$ is responsible for the peak at $m/z = 17$. This is called the M + 1 peak.
The mass spectrum of CH₄ consists of more peaks than just the M peak.

Since the molecular ion is unstable, it fragments into other cations and radical cations containing one, two, three, or four fewer hydrogen atoms than methane itself.

Thus, the peaks at m/z 15, 14, 13, and 12 are due to these lower molecular weight fragments.

\[
\begin{align*}
\text{CH}_4 & \rightarrow \text{e}^- & (\text{CH}_4)^{++} \\
& & \text{mass 16} \\
& \rightarrow -\text{H}^+ & \text{CH}_3^+ \\
& & \text{mass 15} \\
& \rightarrow -\text{H}^+ & \text{CH}_2^{++} \\
& & \text{mass 14} \\
& \rightarrow -\text{H}^+ & \text{CH}^+ \\
& & \text{mass 13} \\
& \rightarrow -\text{H}^+ & \text{C}^{++} \\
& & \text{mass 12}
\end{align*}
\]
Mass Spectrum of Hexane

- The molecular ion for hexane is at $m/z = 86$.
- A small $M + 1$ peak occurs at $m/z = 87$.
- The base peak occurs at $m/z = 57$ ($C_4H_9^+$).
- Major fragment peaks also occur at 43 ($C_3H_7^+$) and 29 ($C_2H_5^+$).
The Nitrogen Rule

- Hydrocarbons, as well as compounds that contain only C, H, and O atoms, always have a molecular ion with an even mass.
- An odd molecular ion generally indicates that a compound contains nitrogen.
- This effect is called the **nitrogen rule**: A compound with an odd molecular ion contains an odd number of N atoms.
- A compound that contains an even number of N atoms gives an even molecular ion.
Alkyl Halides and the M + 2 Peak

• Most elements have one major isotope.
• Chlorine has two common isotopes, ^{35}Cl and ^{37}Cl, which occur naturally in a 3:1 ratio.
 • Thus, there are two peaks in a 3:1 ratio for the molecular ion of an alkyl chloride.
 • The larger peak, the M peak, corresponds to the compound containing the ^{35}Cl. The smaller peak, the M + 2 peak, corresponds to the compound containing ^{37}Cl.
 • When the molecular ion consists of two peaks (M and M + 2) in a 3:1 ratio, a Cl atom is present.
• Br has two common isotopes, ^{79}Br and ^{81}Br, in a ratio of ~ 1:1.
 • When the molecular ion consists of two peaks (M and M + 2) in a 1:1 ratio, a Br atom is present.
Mass Spectrum of 2-Chloropropane

Figure 13.3

(CH₃)₂CHCl
molecular weight = 78, 80

two molecular ions

height ratio: 3:1
m/z = 78 m/z = 80

Relative abundance

m/z
Mass Spectrum of 2-Bromopropane

Figure 13.4

$$(\text{CH}_3)_2\text{CHBr}$$
molecular weight = 122, 124

two molecular ions

height ratio: 1:1

$m/z = 122$ $m/z = 124$
Fragmentation Patterns

• Cleavage of C – C bonds forms lower molecular weight fragments that correspond to lines in the mass spectrum.

Figure 13.5
Some Common Fragmentation Patterns

Carbonyls

$(\text{RC}R')^+$

$\xrightarrow{\alpha \text{ cleavage}}$

$R^+\text{C}=\text{O}$: \leftrightarrow $R^-\text{C}=\text{O}^+$ + R'^\cdot

resonance-stabilized acylium ion

$R = \text{H or alkyl}$

Alcohols

$(\text{OH})^+$

$\xrightarrow{\alpha \text{ cleavage}}$

$\text{C}^+\text{O}\leftrightarrow\text{C}^+\text{OH}$ + R'^\cdot

resonance-stabilized carbocation

$R = \text{H or alkyl}$

Dehydration

$(\text{H}\text{OH})^+$

$\xrightarrow{\text{dehydration}}$

C^+C + H_2O
High Resolution Mass Spectrometers

- **Low resolution** mass spectrometers report \(m/z \) values to the nearest whole number.
 - Thus, the mass of a given molecular ion can correspond to many different molecular formulas.
- **High resolution** mass spectrometers measure \(m/z \) ratios to four (or more) decimal places.
 - This is valuable because except for \(^{12}\text{C} \) whose mass is defined as 12.0000, the masses of all other nuclei are very close—but not exactly—whole numbers.
 - Using the mass values of common nuclei, it is possible to determine the single molecular formula that gives rise to a molecular ion.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{12}\text{C})</td>
<td>12.0000</td>
</tr>
<tr>
<td>(^{1}\text{H})</td>
<td>1.00783</td>
</tr>
<tr>
<td>(^{16}\text{O})</td>
<td>15.9949</td>
</tr>
<tr>
<td>(^{14}\text{N})</td>
<td>14.0031</td>
</tr>
</tbody>
</table>
Exact Mass in High-Res Mass Spectra

• A molecule having a molecular ion at $m/z = 60$ using a low-resolution mass spectrometer could have any one of the following molecular formulas.

• A high-resolution mass spectrometer would differentiate between these to give only one possible formula.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Exact mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_3H_8O</td>
<td>60.0575</td>
</tr>
<tr>
<td>$C_2H_4O_2$</td>
<td>60.0211</td>
</tr>
<tr>
<td>$C_2H_8N_2$</td>
<td>60.0688</td>
</tr>
</tbody>
</table>
Electromagnetic Radiation

• **Electromagnetic radiation** is radiant energy having dual properties of both waves and particles.

• Particles of electromagnetic radiation are called **photons**, and each has a discrete amount of energy called a quantum.

• Electromagnetic radiation can be characterized by its **wavelength** and **frequency**.

• **Wavelength** (λ) is the distance from one point on a wave to the same point on an adjacent wave.

• **Frequency** (ν) is the number of waves passing per unit time. It is reported in cycles per second (s⁻¹), which is also called **hertz** (Hz).

<table>
<thead>
<tr>
<th>Unit</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>meter (m)</td>
<td>1 m</td>
</tr>
<tr>
<td>centimeter (cm)</td>
<td>10⁻² m</td>
</tr>
<tr>
<td>micrometer (µm)</td>
<td>10⁻⁶ m</td>
</tr>
<tr>
<td>nanometer (nm)</td>
<td>10⁻⁹ m</td>
</tr>
<tr>
<td>Angstrom (Å)</td>
<td>10⁻¹⁰ m</td>
</tr>
</tbody>
</table>
The electromagnetic spectrum is arbitrarily divided into different regions, ranging from gamma rays to radio waves.

Visible light occupies only a small region of the electromagnetic spectrum.
Properties of Electromagnetic Radiation

• All electromagnetic radiation travels at the constant speed of light \((c)\), \(3.0 \times 10^8 \text{ m/s}\).

• The energy \((E)\) of a photon is directly proportional to its frequency (i.e., \(E\) increases as \(\nu\) increases).
 - \(E = h\nu\); \(h\) = Planck’s constant \((1.58 \times 10^{-34} \text{ cal}\cdot\text{s})\)

• Since energy and wavelength are inversely proportional, \(E\) decreases as \(\lambda\) increases.
 - \(E = h\nu = hc/\lambda\)
Absorption of Electromagnetic Radiation

• When electromagnetic radiation strikes a molecule, some wavelengths, but not all, are absorbed.
• For absorption to occur, the energy of the photon must match the difference between two energy states in the molecule (ground state to excited state).
• The larger the energy difference between two states, the higher the energy of radiation needed for absorption.
• Higher energy light (UV-visible) causes electronic excitation.
• Lower energy radiation (infrared) causes vibrational excitation.
Absorption of IR Light

• Absorption of IR light causes changes in the vibrational motions of a molecule.
• The different vibrational modes available to a molecule include stretching and bending modes.

 ![Stretching](image)
 ![Bending](image)

 A bond can stretch. Two bonds can bend.

• The vibrational modes of a molecule are quantized, so they occur only at specific frequencies which correspond to the frequency of IR light.
Bond Stretching and Bending

• When the frequency of IR light matches the frequency of a particular vibrational mode, the IR light is absorbed, causing the amplitude of the particular bond stretch or bond bend to increase.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

When the ν of IR light = the ν of bond stretching, IR light is absorbed.

The bond stretches further. The amplitude increases.

• Different kinds of bonds vibrate at different frequencies, so they absorb different frequencies of IR light.
• IR spectroscopy distinguishes between the different kinds of bonds in a molecule, so it is possible to determine the functional groups present.
In an IR spectrometer, light passes through a sample. Frequencies that match the vibrational frequencies are absorbed, and the remaining light is transmitted to a detector. An IR spectrum is a plot of the amount of transmitted light versus its wavenumber. Most bonds in organic molecules absorb in the region of 4000 cm$^{-1}$ to 400 cm$^{-1}$.

Characteristics of an IR Spectrum
Characteristics of an IR Spectrum

• The x-axis is reported in frequencies using a unit called wavenumbers (ν).

• Wavenumbers are inversely proportional to wavelength and reported in reciprocal centimeters (cm$^{-1}$).

• The y-axis is % transmittance: 100% transmittance means that all the light shone on a sample is transmitted and none is absorbed.

• 0% transmittance means that none of the light shone on the sample is transmitted and all is absorbed.

• Each peak corresponds to a particular kind of bond, and each bond type (such as O – H and C – H) occurs at a characteristic frequency.

• Infrared (IR) spectroscopy is used to identify what bonds and what functional groups are in a compound.
Regions of an IR Spectrum

- The IR spectrum is divided into two regions: the functional group region (at $\geq 1500 \text{ cm}^{-1}$), and the fingerprint region (at $< 1500 \text{ cm}^{-1}$).

Figure 13.9

- A and B show peaks in the same regions for their C=O group and sp^3 hybridized C–H bonds.
- A and B are different compounds, so their fingerprint regions are quite different.
Bonds and IR Absorption

• Where a particular bond absorbs in the IR depends on bond strength and atom mass.
 • Stronger bonds (i.e., triple > double > single) vibrate at a higher frequency, so they absorb at higher wavenumbers.
 • Bonds with lighter atoms vibrate at higher frequency, so they absorb at higher wavenumbers.
Bonds and IR Absorption

• Bonds can be thought of as springs with weights on each end (behavior governed by Hooke’s Law).
 • The strength of the spring is analogous to the bond strength, and the mass of the weights is analogous to atomic mass.
 • For two springs with the same weight on each end, the stronger spring vibrates at a higher frequency.
 • For two springs of the same strength, springs with lighter weights vibrate at a higher frequency than those with heavier weights.
Hooke’s Law

- **Hooke’s Law** describes the relationship of frequency to mass and bond length.

Figure 13.10

The frequency of bond vibration can be derived from Hooke’s law, which describes the motion of a vibrating spring:

\[\tilde{\nu} = \sqrt{\frac{k}{m}} \]

- **Hooke’s law**

- **stronger bond** → higher frequency
- **smaller mass** → higher frequency

- The force constant \(f \) is the strength of the bond (or spring). The larger the value of \(f \), the stronger the bond, and the higher the \(\tilde{\nu} \) of vibration.
- The mass \(m \) is the mass of atoms (or weights). The smaller the value of \(m \), the higher the \(\tilde{\nu} \) of vibration.
Four Regions of an IR Spectrum

- Bonds absorb in four predictable regions of an IR spectrum.

Figure 13.11
Table 13.2 Important IR Absorptions

<table>
<thead>
<tr>
<th>Bond type</th>
<th>Approximate $\tilde{\nu}$ (cm$^{-1}$)</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>O–H</td>
<td>3600–3200</td>
<td>strong, broad</td>
</tr>
<tr>
<td>N–H</td>
<td>3500–3200</td>
<td>medium</td>
</tr>
<tr>
<td>C–H</td>
<td>\sim3000</td>
<td></td>
</tr>
<tr>
<td>\cdot C$_{sp}^3$–H</td>
<td>3000–2850</td>
<td>strong</td>
</tr>
<tr>
<td>\cdot C$_{sp}^2$–H</td>
<td>3150–3000</td>
<td>medium</td>
</tr>
<tr>
<td>\cdot C$_{sp}$–H</td>
<td>3300</td>
<td>medium</td>
</tr>
<tr>
<td>C≡C</td>
<td>2250</td>
<td>medium</td>
</tr>
<tr>
<td>C≡N</td>
<td>2250</td>
<td>medium</td>
</tr>
<tr>
<td>C=O</td>
<td>1800–1650 (often \sim1700)</td>
<td>strong</td>
</tr>
<tr>
<td>C=C</td>
<td>1650</td>
<td>medium</td>
</tr>
<tr>
<td></td>
<td>1600, 1500</td>
<td>medium</td>
</tr>
</tbody>
</table>
Bond Strength and % s-Character

- Even subtle differences that affect bond strength affect the frequency of an IR absorption.

- The higher the percent s-character, the stronger the bond and the higher the wavenumber of absorption.
Symmetry and IR Absorption

• For a bond to absorb in the IR, there must be a change in dipole moment during the vibration.

• Symmetrical nonpolar bonds do not absorb in the IR. This type of vibration is said to be IR inactive.
IR Absorptions in Hydrocarbons

- Hexane has only C–C single bonds and \(sp^3 \) hybridized C atoms.
- Therefore, it has only one major absorption at 3000-2850 cm\(^{-1} \).
IR Spectrum of 1-Hexene

- 1-Hexene has a C=C and C_{sp^2}-H, in addition to sp^3 hybridized C atoms.
- Therefore, there are three major absorptions: C_{sp^2}-H at 3150–3000 cm\(^{-1}\); C_{sp^3}-H at 3000–2850 cm\(^{-1}\); C=C at 1650 cm\(^{-1}\).
IR Spectrum of 1-Hexyne

• 1-Hexyne has a C≡C and C\(_{sp}\)−H, in addition to \(sp^3\) hybridized C atoms.

• Therefore, there are three major absorptions: C\(_{sp}\)−H at 3300 cm\(^{-1}\); C\(_{sp^3}\)−H at 3000–2850 cm\(^{-1}\); C≡C at 2250 cm\(^{-1}\).
IR Spectrum of 2-Butanol

- The OH group of the alcohol shows a strong absorption at 3600-3200 cm\(^{-1}\).
- The peak at ~ 3000 cm\(^{-1}\) is due to \(sp^3\) hybridized C–H bonds.
IR Spectrum of 2-Butanone

- The C=O group in the ketone shows a strong absorption at \(~ 1700 \text{ cm}^{-1}\).
- The peak at \(~ 3000 \text{ cm}^{-1}\) is due to \(sp^3\) hybridized C–H bonds.
IR Spectrum of Diethyl Ether

- The ether has neither an OH or a C=O, so its only absorption above 1500 cm\(^{-1}\) occurs at ~ 3000 cm\(^{-1}\), due to \(sp^3\) hybridized C−H bonds.
• The N–H bonds in the amine give rise to two weak absorptions at 3300 and 3400 cm\(^{-1}\).
The amide exhibits absorptions above 1500 cm\(^{-1}\) for both its N–H and C=O groups: N–H (two peaks) at 3200 and 3400 cm\(^{-1}\); C=O at 1660 cm\(^{-1}\).
IR Spectrum of Octanenitrile

- The C≡N of the nitrile absorbs in the triple bond region at ~ 2250 cm⁻¹.
IR and Structure Determination

- IR spectroscopy is often used to determine the outcome of a chemical reaction.
- For example, oxidation of the hydroxy group in compound C to form the carbonyl group in periplanone B is accompanied by the disappearance of the OH absorption, and the appearance of a carbonyl absorption in the IR spectrum of the product.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The absorption at 3600–3200 cm\(^{-1}\) disappears.

The absorption at ~1700 cm\(^{-1}\) appears.
Using MS and IR for Structure Determination

HOW TO Use MS and IR for Structure Determination

Example What information is obtained from the mass spectrum and IR spectrum of an unknown compound X? Assume X contains the elements C, H, and O.

![Mass spectrum of X](image)

- Molecular ion $m/z = 88$

![IR of X](image)

Step [1] Use the molecular ion to determine possible molecular formulas. Use an exact mass (when available) to determine a molecular formula.
- Use the procedure outlined in Sample Problem 13.2 to calculate possible molecular formulas. For a molecular ion at $m/z = 88$:

42
Using MS and IR for Structure Determination

HOW TO, continued . . .

\[
\frac{88}{12} = 7 \text{ C's} \quad \text{maximum (remainder } = 4) \quad \xrightarrow{-\text{CH}_4} \quad \text{C}_7\text{H}_4 \quad \xrightarrow{-1 \text{ C}} \quad \text{C}_6\text{O} \quad \xrightarrow{+12 \text{ H's}} \quad \text{C}_5\text{H}_{12}\text{O} \quad \xrightarrow{-\text{CH}_4} \quad \text{C}_4\text{H}_8\text{O}_2 \quad \xrightarrow{-\text{CH}_4} \quad \text{C}_3\text{H}_4\text{O}_3
\]

- Discounting \(\text{C}_7\text{H}_4 \) (a hydrocarbon) and \(\text{C}_6\text{O} \) (because it contains no H's) gives three possible formulas for \(X \).
- If high-resolution mass spectral data are available, the molecular formula can be determined directly. If the molecular ion had an exact mass of 88.0580, the molecular formula of \(X \) is \(\text{C}_4\text{H}_8\text{O}_2 \) (exact mass = 88.0524) rather than \(\text{C}_5\text{H}_{12}\text{O} \) (exact mass = 88.0888) or \(\text{C}_3\text{H}_4\text{O}_3 \) (exact mass = 88.0160).

Step [2] Calculate the number of degrees of unsaturation (Section 10.2).

- For a compound of molecular formula \(\text{C}_4\text{H}_8\text{O}_2 \), the maximum number of H's = \(2n + 2 = 2(4) + 2 = 10 \).
- Because the compound contains only 8 H's, it has \(10 - 8 = 2 \) H's fewer than the maximum number.
- Because each degree of unsaturation removes 2 H's, \(X \) has one degree of unsaturation. \(X \) has one ring or one \(\pi \) bond.

Step [3] Determine what functional group is present from the IR spectrum.

- The two major absorptions in the IR spectrum above 1500 cm\(^{-1}\) are due to \(sp^3 \) hybridized C–H bonds (\(\sim3000-2850\) cm\(^{-1}\)) and a C=O group (1740 cm\(^{-1}\)). Thus, the one degree of unsaturation in \(X \) is due to the presence of the C=O.
Solving IR problems

1. Check the region around 3000 cm\(^{-1}\)

2. Is there a strong, broad band in the region of 3500 cm\(^{-1}\)?
 If yes, OH, COOH or NH\(_2\)

3. Is there a sharp peak in the region around 1700 cm\(^{-1}\)?
 If yes, C=O

4. Is there a peak in the region around 1630 cm\(^{-1}\)?
 If yes, C=C

5. Be aware that symmetrical alkynes and alkenes do not give IR absorbance