Chap. 17 – Pulse Analysis: Linear Chains

x 8 very high resolution (1/8192)

x 40 x 2 sides, High resolution (1/4096)

x 2 (low/high gains)

http://www.cem.msu.edu/~mantica/equip/betastrip.html

© DJMorrissey, 2009
Noise in an electronic system is an unwanted signal that obscures the wanted signal.

For our purposes there are two classes of electronic noise:

• **External noise**: pickup of signals from sources outside the detector/electronics. Very often motors of various types, lights, ground loops. In principle, external noise can be avoided by careful construction, grounding and operation. (more on this in a moment)

• **Internal noise**: fundamental property of the detector/electronic components – can’t be avoided by should be minimized by good design. There are three subclasses of internal noise:

 - *Thermal noise* (Johnson noise, series noise): mean value is zero but one expects fluctuations around zero. $\sigma(V) \sim \text{Sqrt}(4kT R \Delta f)$ where Δf is the frequency range of observation (bandwidth) – the variance tends to be small except for highest frequencies (fastest signals) – a *White Noise*

 e.g. $\sigma(V) \sim \text{Sqrt}(4*0.026 *1.6e-19*R*\Delta f) \rightarrow 30 \mu V$ at 50Ω & 1ns at 300K

 Real components with R & C in parallel: $\sigma(V) \sim \text{Sqrt}(kT/C)$

 - *Shot noise (parallel noise)*: fluctuations in the current due to its quantization in electrons. $\sigma(V) \sim \text{Sqrt}(2q_e I_{DC} \Delta f)$ where I_{DC} is the (macroscopic) DC current – a *White Noise*

 - *1/f noise*: a catch-all for the fact that many sources of fluctuations have a exponential time dependence which transforms into a 1/f power spectrum.
Why is the preamp discussed separately from the shaping amplifier?

Internal sources of noise tend to most significant at the input stage where the true signal is smallest. Test to determine if S/N depends on shaping amplifier gain. First stage of amplification should be sufficient that signal $>>$ noise pickup during transmission.

Noise is generally referred to in terms of *Equivalent Noise Charge* which can be directly compared to the number of electrons created in the detector and input into the preamplifier. The ENC can be given in Coulombs or more recently “electrons”.

The variances of independent noise sources are to be combined in quadrature, as usual.

![Diagram of log noise vs log shaping time](image.png)

Fig. 17.16 Knoll, 3rd Ed.
Sources of external noise:

Direct injection of EM energy – lights, fluctuations in power supply voltages (low frequency), High frequencies from switching power supplies (kHz).

Pickup of EM radiation through capacitive coupling – Motors (60 Hz) … TMP’s (MHz), RF systems, Computers and Data-buses in CAMAC, VME crates, AC-Welders

Microphonics – mechanical variation of (detector) capacitance

Ground loops – local & long distance

Solutions?

Complete metal enclosure, gaps must be $<< \lambda$ (3cm at 1 MHz, 3µm at 1 GHz)
penetration of EM wave falls exponentially with a coefficient of ~0.1mm at 1 MHz in Al

Bypass capacitors from signal line to ground with capacitance: $\omega C >> 1$

Opinion: Ground all components with very low impedance connections
(use differential signals, optical transmission over long distances)
Pulse Analysis: preamplifiers

Operation amplifier – voltage gain, A

$$V_{out} = A \ V_{in}, \ \text{Impedance} \ Z_i$$

Simple operational amp – output pulse shape (in time)
depends on product of $Z_i C_{det}$ as discussed before. Doesn’t work well for radiation detectors, as is, Z_i should be ∞ in ideal device

Voltage sensitive system: $-A \ & \ Z_i \sim \infty$

$$V_{out} = -A \ V_{in} \ \text{with no feedback}$$

$$V_{out} \sim -(R_2 / R_1) \ V_{in} \ \text{when} \ A \gg R_2 / R_1$$

(R_1 is an important thermal noise source)

© DJMorrissey, 2009
Pulse Analysis: charge sensitive preamplifier

Charge sensitive system: inverting, \(-A\) & \(Z_i \sim \infty\)

\[
V_{\text{out}} = -A \, V_{\text{in}} \quad Q_{\text{out}} = Q_{\text{in}} \quad (Z_i \sim \infty)
\]

\[
V_{\text{out}} = -A \, Q_{\text{in}} \div [C_i + (A+1) \, C_f]
\]

Note that: \(V_{\text{out}} \sim -Q_{\text{in}} / C_f \, e^{-t/R_f} C_f\) with feedback \(R_f\)

Pulser or “test” input

Fig. 17.2 Knoll, 3rd Ed.
One more issue with shaping amps:
Can the shaping time be too short? Yes …

Thus, variations in the rise time will lead to signals with different pulse heights. Most significant for Ge detectors and proportional counters without grids.
We need a way to generate a logic pulse that maintains a rigid time relationship to the interaction of the radiation in the detector.

- **TTL logic, +5V, ≥ 1μs**
 - “positive” logic, high-true
- **ECL logic, -1.75 or -0.9V**
 - “positive” logic, high-true
- **Differential Input**

Jitter

Fig. 17.36 Knoll, 3rd Ed.

Time-Walk

Fig. 17.37 Knoll, 3rd Ed.

Z/C of bipolar pulse is constant in time but slow

Fig. 17.39 Knoll, 3rd Ed.
For a linear rise (or fall) slope zero-crossing occurs at $t = t_d / (1-f)$

Thus: set $t_d = f \times t_r$

Time width is given by rise-time / (S/N)
A silicon detector is attached to surface barrier detector for detecting alpha particles. What is the maximum equivalent noise-charge (ENC) for the preamp if the user wants to resolve the two alpha lines emitted by an 241Am source?