Chemistry 882 Lecture Notes 8

Welity

Chemical bonds make largest contribution to molecular energy ($\sim 350 \mathrm{~kJ} /$ mole for Crc^{-c} single bound $(\approx 10-100 \times$ larger than intermuloccelar Steric energy is an important energy) chon-bonding interaction (electrostatic repulsion of e^{-}clouds between atoms not in the functional group

Figure 1.21 The peptide bond. The peptide bond that chemically links two amino acid residues along a polypeptide chain is a $\mathrm{C}-\mathbf{N}$ bond of an amide linkage. The bond shows partial double-bond character, with the π-electrons distributed between the $\mathrm{O}-\mathrm{C}-\mathrm{N}$ atoms (top panel), and is not freely rotating [bond lengths and angles from Engh and Huber (1991), Acta Crystrallogr. A 47: 392-400]. The bond is found predominantly in the trans-configuration. but could also adopt the cis-form (middle panel). The two freely rotating bonds on either side of the C_{α}-carbon thus define the torsion angles ϕ (for rotation about the $\mathrm{N}-\mathrm{C}_{4}$ bond) and ψ (for rotation about the $\mathrm{Ca}-\mathrm{C}$ bond).

Protein backbone

Figure 3.9 Intramolecular interactions between internal alanine residues in a polvalanine chain -The rotation along ϕ is fixed at -180°.and ψ rotated from -180° to $+120^{\circ}$. The dipole moment of the peptide bonds are she in the plane of the bond. The close steric interaction between the hydrogen atoms of the amino groups at $\psi=0^{\circ}$ is highlighted by a double arrow.

Steric \Rightarrow repalaue onerlap/clash positive electro. energy static

FIGURE 7-7. A Ramachandran diagram (named in honor of its inventor, G.N. Ramachandran) shows the sterically allowed ϕ and w angles for poly-L-alanine. The diagram was calculated using the van der Waals distances in Table 7-1. Regions of "normally allowed" ϕ and y angles are shaded in blue, whereas green-shaded regions correspond to conformations having "quter limit" van der Waals distances. The conformation angles, ϕ and ψ, of several secondary structures are indicated below;

Secondary Structure	$\phi(\mathrm{deg})$	$\psi(\mathrm{deg})$
Right-handed α helix (α)	-57	-47
Parallel β pleated sheet $(\uparrow \uparrow$)	-119	113
Antiparallel β pleated sheet ($\uparrow \downarrow)$	-139	135
Right-handed 3_{10} helix (3)	-49	-26
Right-handed π helix (π)	-57	-70
2.2, ribbon (2)	-78	59
Left-handed polyglycine II and poly-L-proline	-79	150
II helices (II)		
Collagen (C)	-51	153
Left-handed α helix $\left(\alpha_{\mathrm{L}}\right)$	57	47

[After Flory, P.J., Statistical Mechanics of Chain Molectules, p. 253, Interscience (1969): and IUPAC-IUB Commission on Biochemical Nomenclature, Biochemistry 9, 3475 (1970).]

FIGURE 8-9 The Ramachandran diagram of Gey residues in a polypeptide chain. "Normally allowed" regions are shaded in he, whereas green-shaded regions correspond to "outer lint" van der Walls distances. Gly residues have far greater zuformational freedom than do other (bulkier) amino acid residues, as the comparison of this figure with Fig. 8.7 indicates. thee Ramachandran, G.N. and Sasisekharan, V., Adv. Protein Chen. 23, 332 (1968).]

Conloma Energy

$$
\begin{aligned}
& u=C \frac{q_{1} q_{2}}{D r} \\
& C=9.0 \times 10^{9} \frac{\mathrm{~J}-\mathrm{m}}{\mathrm{O}} \\
& \text { Coulomis } \overline{()^{2}} \equiv \text { Conloner }
\end{aligned}
$$

$$
\begin{aligned}
& \text { elechric charges } \\
& \text { Couloms (c) constant }
\end{aligned}
$$

$D \equiv$ dielectric constant \Rightarrow describes skielding (reduction) of collous energy by intervening unadter
vacwum $D=1$
water $D \approx 80$
hydrocarbon $D \approx 2$
protein D 104
interion

$$
\begin{gathered}
\mathrm{Na}+\mathrm{It}_{20} \mathrm{O} \mathrm{H}_{2} \mathrm{O} \mathrm{H}_{2 \mathrm{O}} \mathrm{Cl}^{-} \\
\mathrm{H}_{2} \mathrm{O} \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

$$
-\delta_{0} \tilde{\delta}_{1} \delta+
$$

Na^{t}	Cl^{-}
te	$-e$

Opten corsider the evergy of a single q with the secrrounding charges三electrostatic potential/voltase

In malecules, charges are often delocalized ower functional groups

Bon (self) energy of delocalize charges

$$
G_{\text {born }}=\frac{C q^{2}}{2 D a}
$$

Difference in porn energies provides basis for single chases to be in region with larges D

$$
\begin{aligned}
& 9 \times 10^{9} \frac{\mathrm{~J}-\frac{\mathrm{m}}{\mathrm{C}^{2}}}{} \\
& \Delta u=C q^{\frac{c^{2}}{2}}\left(1 \times 10^{-38} b^{2}(\text { charse of 1e) }\right. \\
& \Delta u=\frac{C q^{2}}{2 @ a}\left(\frac{1}{\left(D_{1}\right)}-\frac{1}{\left(D_{2}\right)}\right) \\
& \approx 1 \times 10^{-19} \mathrm{~J} \\
& \times \frac{6 \times 10^{23}}{\text { mole }} \approx 60 \frac{\mathrm{~kJ}}{\text { male }}
\end{aligned}
$$

Electrostatic energy can be Calculated using charges, partial charges, charge gemetry and dielectric constants

In chemical bonds and Functional groups, there is of tex net absence of charge but asymmetric distribution of charge \Rightarrow electric dipole
It's often convenient to consider dipoles

Table 3.2 Examples of Partial Charges of Atoms in Proteins Calculated from Quantum Mechanics

Amino Acid	Atom Type	Charge
Backbone	\mathbf{N}	-0.36
	H_{N}	+0.18
	$\mathrm{C}_{\boldsymbol{\alpha}}$	+0.06
	H_{α}	+0.02
Ser	C	+0.45
	O	-0.38
	$\mathrm{C}_{\boldsymbol{\beta}}$	+0.13
	$\mathrm{H}_{\boldsymbol{\beta}}$	+0.02
Tyr	O_{γ}	-0.31
	H_{γ}	+0.17
Cys	O_{η}	-0.33
	H_{η}	+0.17
	\mathbf{S}_{γ}	+0.01
	H_{γ}	+0.01

Source: From Momany et al. (1975), J. Phys. Chem. 79, 2361-2381.

Dipole is represented as two charges of equal magnitude and opp unite sign separated by a distance a

Dipole moment $\vec{\mu}$ is a vector pointing firm negative to positive charge with magnitude charge \times distance $=$ zen

Irr two dipales separatel by distance r,

Sign of x depents on relatice rientation of $\vec{\mu}_{1}$ and $\stackrel{\rightharpoonup}{\mu}_{2}$

Figure 3.6 Potential energy functions for dipole-dipole interactions. Dipoles that are arranged side by side in parallel and antiparallel directions have dipole moments that are perpendicular to the distance vector \mathbf{r}. The potential energy is calculated by Eq. 3.14. The potential energies of the head-to-tail and head-to-head alignments of dipoles, however, must be evaluated using the more general relationship in Eq. 3.13.

$$
\begin{aligned}
& \text { Dipolan } \\
& \text { Exersy }
\end{aligned}
$$

van der Walls (dispersion) energy is between two functional os atoms groups \Rightarrow al ways attractive \Rightarrow e^{-}locations (densities) in one functional group chance slightly in response to Coulomb energies with nuclei and e^{-i} of the other functional group The $e^{-i} S_{n}$ and rill have repulsive (positive) Contomat energy with other $e^{-c} s$ and nuclei (steric repulsion)

Lennand-Gones potential

atoms

Figure 3.7 The van der Waals potential is a sum of the very Short-range-attraction between atoms (London dispersion forces) and the extremely short-range steric repulsion between atoms. Together, the two functions define an optimal distance r_{0}, which is sum of the van der Waals radii $r_{\text {ydw }}$ of the two atoms.

Table 3.4 Coefficients for the Repulsive (A) and Attractive (B) Terms of the 6 -12 van der Waals Potential in Eq. 3.17

Atomic Interaction	A ($\mathrm{kJ}^{\left.-\mathrm{nm}^{12} / \mathrm{mol}\right)}$	$B\left(\mathbf{k} .5-\mathrm{nm}^{6} / \mathrm{mol}\right)$	$r_{0}(\mathrm{~nm})$
H \cdots H	1.84×10^{-8}	1.92×10^{-4}	0.240
$\mathrm{H} \cdots \mathrm{C}$	1.57×10^{-7}	5.27×10^{-4}	0.290
$\mathrm{H} \cdots \mathrm{N}$	1.11×10^{-7}	5.15×10^{-4}	0.275
$\mathrm{H} \cdots \mathrm{O}$	1.03×10^{-7}	5.11×10^{-4}	0.272
$\mathrm{H} \cdots \mathrm{P}$	6.35×10^{-7}	1.43×10^{-3}	0.310
C... C	1.18×10^{-6}	1.52×10^{-3}	0.340
C...N	8.90×10^{-7}	1.51×10^{-3}	0.325
$\mathrm{C} \cdots \mathrm{O}$	8.49×10^{-7}	1.51×10^{-3}	0.322
C..P	4.49×10^{-6}	4.12×10^{-3}	0.360
$\mathrm{N} \cdots \mathrm{N}$	6.63×10^{-7}	1.50×10^{-3}	0.310
$\mathrm{N} \cdots \mathrm{O}$	6.30×10^{-7}	1.50×10^{-3}	0.307
N...P	3.44×10^{-6}	4.08×10^{-3}	0.345
$\mathrm{O} \cdots \mathrm{O}$	5.97×10^{-7}	1.51×10^{-3}	0.304
O $\cdots \mathrm{P}$	3.28×10^{-6}	4.10×10^{-3}	0.342
$\mathbf{P} \cdots \mathrm{P}$	1.68×10^{-5}	1.12×10^{-2}	0.380

The equilibrium distance r_{0} is the sum of the van der Waals radii of the two interacting atoms. Source: From F. Jordan (1973), J. Theor. Biol. 30, 621-630.

Hydrogen bonds are an energy between H cord non- sonde other atoms (commonly C, N, O, F)

Evidence ℓ os H-bonds is distance between H and mon-bonded other atom

H-bond energies are typically $\varphi-50 \mathrm{~kJ}$ rico le

